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Dyson Brownian Motion as a Limit of
the Whittaker 2d Growth Model

Jun Gao and Jie Ding

Abstract—This paper proves that a class of scaled Whittaker
growth models will converge in distribution to the Dyson Brow-
nian motion. A Whittaker 2d growth model is a continuous-time
Markov diffusion process embedded on a spatial triangular array.
Our result is interesting because each particle in a Whittaker 2d
growth model only interacts with its neighboring particles, while
each particle in the Dyson Brownian motion interacts with all
the other particles. We provide two different proofs of the main
result.

Index Terms—Convergence, Dyson Brownian motion, Markov
diffusion process, Whittaker 2d growth model.

I. INTRODUCTION

A Whittaker 2d growth model is a continuous-time Markov
diffusion process

T (t) = {Tk,j(t), t > 0}1≤j≤k≤N ∈ RN(N+1)/2,

defined by the stochastic differential equations:

dT1,1 = dW1,1 + a1dt,

For k = 2, . . . , N :

dTk,1 = dWk,1 + (ak + eTk−1,1−Tk,1)dt,

dTk,2 = dWk,2 + (ak + eTk−1,2−Tk,2 − eTk,2−Tk−1,1)dt,

· · ·
dTk,k−1 = dWk,k−1 + (ak + eTk−1,k−1−Tk,k−1 − eTk,k−1

− Tk−1,k−2)dt,

dTk,k = dWk,k + (ak − eTk,k−Tk−1,k−1)dt,

where {Wk,i : 1 ≤ i ≤ k ≤ N} are independent Brownian
motions, and {ak : 1 ≤ k ≤ N} are constants. A Whittaker
2d growth model can be seen as a triangular array of spatially
interacting particles.

From the above definition, a Whittaker 2d growth model
consists of the Brownian motion diffusion and drift terms that
characterize the interactions among Tk,j’s. A unique aspect
of the model is that each drift term has at most two particles
on the layer above. Also, the interactions are one-directional,
meaning that each level can influence the next level but not
the other way around.

The Whittaker 2d growth models are closely connected
with several other fundamental mathematical and physical
objects, such as the quantum toda lattice [1], the Whittaker
functions [2], the q-Whittaker 2d growth model, and the
Macdonald symmetric functions [3].
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The Dyson Brownian motion, introduced by in [4], is an
important stochastic process. It is deeply connected with the
random matrix theory (see, e.g., [5]–[11]). The existence and
uniqueness of Dyson Brownian motion were summarized in
[12]. An interlaced version of Dyson Brownian motion was
developed in [13]. An infinite-dimensional Dyson Brownian
motion was studied in [14]. A system of stochastic processes
by generalizing the drift terms in the Dyson Brownian motion
was shown to converge to the Wigner Law [15]. The Dyson
Brownian motion was also shown to be closely connected with
several other stochastic processes, including the non-colliding
Brownian motion and the stochastic process of reflections [16].

In this paper, we will show that a scaled Whittaker 2d
growth model, where Tk,j(t) is replaced with 1√

γTk,j(γt),
converges in distribution to the Dyson Brownian motion as
γ → ∞. The result is interesting and somewhat surprising
because each particle in a Whittaker 2d growth model only
interacts with its neighboring particles; in contrast, each par-
ticle in the Dyson Brownian motion simultaneously interacts
with all the other particles.

A different scaling of the Whittaker 2d growth model was
studied in [17], where Tk,j(t) was replaced with 1

γTk,j(γt),
and a large deviation principle was derived. It was shown that
under that scaling, the Whittaker 2d growth model converges
to the constant zero.

We will provide two different proofs of the main result.
The first proof is from the perspective of the infinitesimal
generator of Whittaker 2d growth models. The proof is based
on the critical observation that under the above scale (of γ),
the scaling effect will not essentially change the diffusion
terms, but it will drive the drift terms to converge to the drift
terms in the Dyson Brownian motion. Accordingly, the proof
of convergence is based on elementary but highly nontrivial
derivations of the scaled drift terms. The second proof is from
the perspective of transition kernels. We will treat both the
Whittaker 2d growth model and the Dyson Brownian motion
as a consequence of their respective transition kernels and turn
the problem into the proof of transition kernels.

The outline of the paper is given below. In Section II, we
introduce the main result. In Section III, we provide proof of
the main result. In section IV, we prove the main theorem
in a different way by understanding the distribution through
transition kernels.

II. MAIN RESULT

A. Scaled Whittaker 2d growth model
We show that a class of scaled Whittaker 2d growth models

converge (in distribution) to the Dyson Brownian motion. In
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particular, we consider the Whittaker 2d growth models where
ak = 0 for all k, and Tk,j(t) is replaced with 1√

γTk,j(γt) for
a positive scaling factor γ. Consequently, we have the scaled
stochastic differential equation system

dT1,1 = dW1,1

For k = 2, 3. . . . , N ,

dTk,1 = dWk,1 + e
√
γ(Tk−1,1−Tk,1)dt,

dTk,2 = dWk,2 + (e
√
γ(Tk−1,2−Tk,2) − e

√
γ(Tk.2−Tk−1,1))dt,

. . .

dTk,k−1 = dWk,k−1 + (e
√
γ(Tk−1,k−1−Tk,k−1)

− e
√
γ(Tk.k−1−Tk−1,k−2))dt,

dTk,k = dWk,k − e
√
γ(Tk,k−Tk−1,k−1)dt.

where {Wk,j}1≤j≤k≤N is a set of independent standard
Brownian motions. We also suppose that the starting positions
satisfy

Tk+1,j+1(0) < Tk,j(0) < Tk+1,j(0), 1 ≤ j ≤ k ≤ N. (1)

The above constraint ensures that the process does not diverge.

B. Dyson Brownian motion

The Dyson Brownian motion is defined as follows. Let
(W1, ...,WN ) be an N -dimensional Brownian motion in a
probability space (Ω, P ) equipped with a filtration F =
{Ft, t ≥ 0}. Let ∆N be the set

∆N = {(xi)1≤i≤N ∈ RN : x1 < x2 < · · · < xN−1 < xN}.

Let β ≥ 1 be a constant and t ≥ 0. Suppose that the initial
condition is λN (0) = (λ1N (0), λ2N (0), · · · , λNN (0)) ∈ ∆N . It
can be shown that there exists a unique strong solution to the
stochastic differential system

dλiN =

√
2√
βN

dW i +
1

N

∑
1≤j≤N,j 6=i

1

λiN − λ
j
N

dt, (2)

and that λN (t) ∈ ∆N for all t > 0 (see, e.g., [12]). The
process defined in (2) is named the Dyson Brownian motion.

With a different scaling and change of notation, Dyson
Brownian motion can be rewritten as

dT iN = dW i +
∑

1≤j≤N,j 6=i

1

T iN − T
j
N

dt. (3)

C. Main result: convergence of scaled Whittaker 2d growth
models to the Dyson Brownian motion

Theorem II.1 (Main Theorem). Assume that the initial con-
dition (1) hold. The Whittaker 2d growth models (in II-A)
converge in distribution to the Dyson Brownian motion (3)
as γ →∞.

III. PROOF OF THEOREM II.1

We provide a sketch of the proof. First, we will use
O’Connel’s approach in [1] to obtain an explicit form of the
Whittaker 2d growth model’s drift terms. We will then prove
that the scaled drift terms will converge to the drift terms in
the Dyson Brownian motion. In that proof, we will write the
drift term as a fraction and separately derive the limit of its
numerator and denominator.

We define Ψ0 : RN+1 → R by

Ψ0(x) =

ˆ
RN(N+1)/2

eF0(T )
N∏
k=1

k∏
i=1

dTk,i, (4)

where TN+1,i = xi for 1 ≤ i ≤ N + 1, and

F0(T ) = −
∑

1≤i≤k≤N

(
eTk,i−Tk+1,i + eTk+1,i+1−Tk,i

)
.

In the sequel, we will also write

N∏
k=1

k∏
i=1

dTk,i

as dT . To simplify the notation, we also define

Gk(T ) =

k∑
i=1

eTk,i−Tk+1,i + eTk+1,i+1−Tk,i ,

which implies that

F0(T ) = −
N∑
k=1

Gk(T ).

It was shown in [1] that a Whittaker 2d growth model has
the infinitesiaml generator

1

2
∆ +∇ log Ψ0 · ∇, (5)

where ∆ =
∑
i ∂

2
xi

is the Laplacian operator and ∇ =
(∂x1

, · · · , ∂xN+1
) is the gradient operator and Ψ0 is defined

as:

Ψ0(x) =

ˆ
RN(N+1)/2

exp

{
−

∑
1≤i≤k≤N

(eTk,i−Tk+1,i

+ eTk+1,i+1−Tk,i)

}
dT.

Comparing (5) with the definition of Dyson Brownian
motion, we can see that the diffusion terms are the same.
To prove the main theorem II.1, we only need to prove the
convergence of the drift term of (5) to that of Dyson Brownian
motion. Specifically, it suffices to prove that

lim
η→∞

η∂xi log Ψ0(ηx) =
∑

1≤j≤N+1,j 6=i

1

xj − xi
, (6)

Note that the drift term on the left-hand side can be written
as

η∂xi
log Ψ0(ηx) =

η∂xi
Ψ0(ηx)

Ψ0(ηx)
(7)

Next, we will analyze the denominator and numerator of (7).
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A. Convergence of the denominator of (7)
By the definition of (4), we have

lim
η→∞

exp

{
−

∑
1≤j≤k≤N

(eη(Tk,j−Tk+1,j) + eη(Tk+1,j+1−Tk,j))

}
=

∏
1≤j≤k≤N

1Tk,j−Tk+1,j<0 · 1Tk+1,j+1−Tk,j<0

where 1(·) denotes the indicator function. Since the integrand
is bounded, we have

lim
η→∞

Ψ0(ηx)

=

ˆ ∏
1≤j≤k≤N

1Tk,j−Tk+1,j<0 · 1Tk+1,j+1−Tk,j<0 dT

=

∏
1≤j<j′≤N+1(xj − xj′)∏

1≤k≤N k!
. (8)

The above equality (8) can be proved inductively usingˆ
x1>y1>x2>···>yk>xk+1

hk(y)dy =
1

k!
hk+1(x) (9)

with hk(t) =
∏

1≤j<j′≤k(tj − tj′), which can be fur-
ther proved by writing hN (y) as the determinant of
[yk−1j ]1≤j≤N,1≤k≤N .

B. Convergence of the numerator of (7)
It can be calculated that

η∂xiΨ0(ηx)

=

ˆ
exp

{
−

∑
1≤j≤k≤N

(eη(Tk,j−Tk+1,j) + eη(Tk+1,j+1−Tk,j))

}
· (eη(yi−xi) − eη(xi−yi−1))ηdT

=

ˆ
exp

{
−

∑
1≤k≤N

Gk(ηT )

}
eη(yi−xi)ηdT (10)

−
ˆ

exp

{
−

∑
1≤k≤N

(Gk(ηT ))

}
eη(xi−yi−1)ηdT. (11)

We first derive the limit of the first part in (10). Since
Kη(t) = exp{−eηt}eηtη is a delta kernel as η → ∞, we
have

(10) = lim
η→∞

ˆ ∏
1≤j≤N,j 6=i

1yj−xj<0

∏
1≤j≤N

1xj+1−yj<0

· exp

{
−

∑
1≤k<N

Gk(ηT )

}
Kη(yi − xi)Πdyj

=

ˆ ∏
1≤j≤N,j 6=i

1yj−xj<0

∏
1≤j≤N

1xj+1−yj<0

·
(

lim
η→∞

ˆ
exp

{
−

∑
1≤k<N

Gk(ηT )Π1≤k≤N−1Πk
i=1dTk,i

})
· 1yi=xi

∏
j 6=k

dyj

=

ˆ
1∏

k<N k!

∏
1≤j≤N,j 6=k

1yj−xj<0

∏
1≤j≤N

1xj+1−yj<0

· hN (y)1yi=xi

∏
j 6=k

dyj . (12)

where the last equality is obtained by

lim
η→∞

ˆ
exp{−

∑
1≤k<N

Gk(ηT )}dT

=
1∏

1≤k<N k!

∏
1≤j<j′≤N

(TN,j − TN,j′)

=
1∏

1≤k<N k!

∏
1≤j<j′≤N

(yj − yj′) =
1∏

1≤k<N k!
hN (y).

Similarly, the limit of (11) can be proved to be

−
ˆ

1∏
1≤k<N k!

∏
1≤j≤N

1yj−xj<0

∏
1≤j≤N,j 6=k−1

1xj+1−yj<0

· hN (y)1yi−1=xi

∏
j 6=k−1

dyj . (13)

Combining the results in (12) and (13), which are re-
spectively the limits of (10) and (11), we conclude that
limη→∞ ∂xiΨ0(ηx) is equal to the partial derivative ofˆ

1∏
1≤k<N k!

∏
1≤j≤N

1yj−xj<0

∏
1≤j≤N

1xj+1−yj<0

· hN (y)
∏

1≤j≤N

dyj ,

which is exactly (8). In other words, the limit of the numerator
in (7) is equal to

∂xi

∏
1≤j<j′≤N+1(xj − xj′)∏

1≤k≤N k!
.

C. Proof of the main theorem

Bringing the results in Subsections 8 and III-B into (7), we
have

lim
η→∞

∂xi
Ψ0(ηx)

Ψ0(ηx)
=
∂xi

∏
1≤j<j′≤N+1(xj − xj′)∏

1≤j<j′≤N+1(xj − xj′)

=
∑

1≤j≤N+1,j 6=i

1

xj − xi
.

Therefore, we conclude the proof of the convergence in (6)
and thus the main theorem.

IV. ANOTHER PROOF OF THEOREM II.1
USING TRANSITION KERNELS

We provide another proof of Theorem II.1. The proof will
be based on a recent result in [2], which showed that we
could understand the Whittaker 2d growth model at the level
N as the result of applying transition kernels from previous
levels. Meanwhile, Dyson Brownian motion can be seen as the
result of applying the transition kernel from previous levels to
level N in a multilevel Dyson Brownian motion [2], [13]. The
above observations motivate the following solution. Suppose
that they start from the same single Brownian motion at level
1. To prove scaled Whittaker 2d growth models converges to
the Dyson Brownian motion, we only need to verify that the
transition kernel of the former converges to the latter.
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A. Existing results on transition kernels

We let y = (yki , 1 ≤ i ≤ k ≤ N) ∈ RN(N+1)/2,
x = (xi, 1 ≤ i ≤ N + 1) ∈ RN+1, and r = (y, x) ∈
R(N+1)(N+2)/2 is the concatenation of x and y. Following the
notation in [2], the transition kernel of Whittaker 2d growth
model is defined by

Γ(x, y) =
exp{−T2(r)}

Ψ0(y)
, (14)

where

T2(r) =
∑

1≤i≤k≤N

exp{rki − rk+1
i }+ exp{rk+1

i+1 − r
k
i }.

For the transition kernel of the Dyson Brownian motion, we
first consider the Gelfand-Tsetlin cone

GN = {r = (rki , 1 ≤ i ≤ k ≤ N) ∈ RN(N+1)/2 :

rk−1i−1 ≤ r
k
i ≤ rk−1i }.

Its subspace

DN = {r ∈ GN : rki < rki+1, 1 ≤ i ≤ k ≤ N}

is the domain of the process of multilevel Dyson Brownian
motion. For x ∈ RN+1, and x1 < x2 < · · · < xN+1, we
define the cross-section

DN (x) = {y ∈ DN : x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · yN ≤ xN+1}.

The kernel for the multilevel Dyson Brownian motion is
defined by

Γ0(x, y) =

N∏
k=1

k!
∏

1≤i<j≤N

(xi − xj)−11DN (x)(y). (15)

Hence, we need to prove Γ converges to the transition kernel
of Multilevel Dyson Brownian motion Γ0.

B. Convergence of scaled transformation operator

Recall that for the Γ(y, x) in (14), the numerator is
exp{−T2(ηr)} and r ∈ R(N+1)(N+2)/2 can be written as
r = (y, x). It can be verified that the limit of scaled numerator
satisfies

lim
η→∞

T2(ηr) =

{
0 when y ∈ DN (x)

+∞ otherwise.

Therefore,

lim
η→∞

exp{−T2(ηr)} = 1y∈DN (x).

For the denominator of (14), which is Ψ0(x), the limit has
been calculated in (9) to be

lim
η→∞

Ψ0(ηx) =
1∏

1≤k≤N k!

∏
i<j

(xi − xj).

This implies that the limit of Γ(x, y) converges to the trans-
formation of Γ(x, y) of Dyson Brownian motion in (15).

V. CONCLUSION

In this work, we proved that scaled Whittaker 2d growth
models can converge to the Dyson Brownian motion. An
interesting future problem is to emulate the current proof to
show that hierarchical Whittaker 2d growth models converge
in distribution to the multilevel Dyson Brownian motion.
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