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ABSTRACT
The Bayes factor is a widely used criterion in model comparison and its logarithm is a difference of out-of-
sample predictive scores under the logarithmic scoring rule. However, when some of the candidate models
involve vague priors on their parameters, the log-Bayes factor features an arbitrary additive constant that
hinders its interpretation. As an alternative, we consider model comparison using the Hyvärinen score. We
propose a method to consistently estimate this score for parametric models, using sequential Monte Carlo
methods. We show that this score can be estimated for models with tractable likelihoods as well as nonlinear
non-Gaussian state-space models with intractable likelihoods. We prove the asymptotic consistency of
this new model selection criterion under strong regularity assumptions in the case of nonnested models,
and we provide qualitative insights for the nested case. We also use existing characterizations of proper
scoring rules on discrete spaces to extend the Hyvärinen score to discrete observations. Our numerical
illustrations include Lévy-driven stochastic volatility models and diffusion models for population dynamics.
Supplementary materials for this article are available online.
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1. Introduction

1.1. Bayesian Model Comparison

Bayesian model comparison is challenging in situations where
the candidate models involve either vague or improper prior
distributions on some of their parameters. The Bayes factor
(Jeffreys 1939) between two models—defined as the ratio of
their marginal likelihoods—is a widely used approach to model
comparison. If one of the candidate models includes the data-
generating process, that model is termed well-specified or cor-
rect, and the Bayes factor can be interpreted as a ratio of odds,
which updates the relative probabilities of the models being
correct. In the misspecified or M-open setting (Bernardo and
Smith 2000), the marginal log-likelihood can be interpreted as a
measure of out-of-sample predictive performance assessed with
the logarithmic scoring rule (e.g., Kass and Raftery 1995; Key,
Pericchi, and Smith 1999; Bernardo and Smith 2000). Scoring
rules are loss functions for the task of predicting an observation
y with a probability distribution p, and the logarithmic scoring
rule quantifies predictive performance with − log p(y). Under
regularity conditions, the Bayes factor leads to consistent model
selection as the number of observations goes to infinity (e.g.,
Dawid 2011; Lee and MacEachern 2011; Walker 2013; Chib and
Kuffner 2016).

However, if any of the models involves either vague or
improper prior distributions on their parameters, the Bayes
factor can take arbitrary values and becomes unreliable for
any fixed sample size. This is problematic as vague priors
are extensively used in practice, for instance when uniform
distributions are specified on intervals of plausible values (e.g.,
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Knape and de Valpine 2012, sec. 4.2). Improper priors also
arise from theoretical considerations, for instance as Jeffreys
priors (e.g., Robert 2007, chap. 3 ). Our article takes the use of
such priors by practitioners as a starting point, and addresses
the question of model comparison in this context where one
cannot rely on the Bayes factor. This limitation of the Bayes
factor, sometimes referred to as Bartlett’s paradox (Bartlett 1957;
Kass and Raftery 1995), is a long-lasting challenge in Bayesian
model comparison (Chapter 7 of Robert 2007), as it seems to
suggest that prior specification should take into account the
potential use (or misuse) of Bayes factors. Many approaches
have been proposed to tackle this issue, either by modifying
the Bayes factor (e.g.,O’Hagan 1995; Berger and Pericchi 1996;
Berger, Pericchi, and Varshavsky 1998; Berger and Pericchi
2001) or bypassing it altogether (e.g., Kamary et al. 2014, and
references therein). In this article, we investigate an alternative
criterion, that is, (1) principled for any sample size, thanks to an
interpretation in terms of predictive performance and scoring
rules, (2) enjoys asymptotic consistency properties, and (3) is
robust to the arbitrary vagueness of prior distributions.

Since the Bayes factor is associated with predictive perfor-
mance under the logarithmic scoring rule, natural alternatives
arise by considering other scoring rules (Dawid and Musio 2015;
Dawid et al. 2016). We consider the Hyvärinen score (Hyvärinen
2005), which is proper, local, and homogeneous (Dawid and
Lauritzen 2005; Parry, Dawid, and Lauritzen 2012; Ehm and
Gneiting 2012). Given T observations y1:T = (y1, . . . , yT) ∈
YT and a finite set M of candidate models, each inducing
a joint marginal density of (Y1, . . . , YT) denoted by pM for
M ∈ M, we can regard the log-Bayes factor as a compari-
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son of predictive sequential (or prequential, Dawid 1984) log-
score − log pM(y1:T) = ∑T

t=1 − log pM(yt|y1:t−1), where by
convention pM(y1|y1:0) denotes the prior predictive distribution
of Y1 under model M. By contrast, for any dy-dimensional
observation y ∈ Rdy and twice differentiable density p on Rdy ,
the Hyvärinen score is defined as

H(y, p) = 2!y log p(y) + ∥∇y log p(y)∥2, (1)

where ∇y and !y, respectively, denote the gradient and Lapla-
cian operators with respect to the variable y. We would then
select the model with the smallest prequential Hyvärinen score,
defined as

HT(M) =
T∑

t=1
H

(
yt , pM(dyt|y1:t−1)

)
. (2)

Homogeneity is the key property of the Hyvärinen score
which is not shared by the logarithmic scoring rule. It ensures
that the score does not depend on normalizing constants of
candidate densities, hence offering robustness to vague priors
and allowing for improper priors. For example, if M denotes
the toy model Y1, . . . , YT | µ iid∼ N (µ, 1) with prior µ ∼
N (0, σ 2

0 ) and known hyperparameter σ0 > 0, then Yt | Y1:t−1 ∼
N

(
µt−1, σ 2

t−1 + 1
)

for all t ∈ {0, . . . , T} by conjugacy, where
σ 2

t = (t + σ−2
0 )−1 and µt = σ 2

t
∑t

i=1 Yi for all t ∈ {1, . . . , T}.
The log-score − log pM(y1:T) becomes equivalent to log σ0 when
σ0 → +∞, and thus diverges to +∞ as σ0 increases. In
other words, one could obtain Bayes factors that prefer virtually
any other model over this one, by simply increasing σ0 thus
making the prior on µ arbitrarily vague, for any fixed number of
observations T. On the other hand, the prequential Hyvärinen
score, computed from Equations (1) and (2) using conjugacy,
converges to a finite limit as σ0 → +∞, so that increasing
σ0 can only influence the prequential Hyvärinen score to a
limited extent. Throughout the article, the notion of robustness
to arbitrary vagueness of priors is to be understood in that sense.
Such a robustness is desirable when models are misspecified or
when the specification of vague priors is dictated by practical
considerations rather than a genuine reflection of one’s prior
knowledge, as is sometimes the case for parameters of complex
state-space models (see, e.g., Section 4.2). The limit of HT(M)

as σ0 → +∞ also unambiguously defines the value of the score
for a flat prior p(µ) ∝ 1.

Without conjugacy, the calculation of the Hyvärinen score
involves typically intractable integrals with respect to the
sequence of partial posteriors. In this paper, we show how to use
sequential Monte Carlo (SMC) methods to consistently estimate
prequential Hyvärinen scores, thereby enabling their use in
Bayesian model comparison for general parametric models.
More specifically, we show that this estimation can be achieved
for models with tractable likelihoods via SMC samplers (Chopin
2002; Del Moral, Doucet, and Jasra 2006; Zhou, Johansen,
and Aston 2016). Furthermore, the case of generic state-space
models can be covered by using SMC2 (Fulop and Li 2013;
Chopin, Jacob, and Papaspiliopoulos 2013) under the mild
requirement that we can simulate the latent state process and
evaluate the measurement density (Bretó, He, Ionides, and
King 2009; Andrieu, Doucet, and Holenstein 2010), plus some
integrability conditions. Our second contribution is to prove

that, under regularity conditions allowing for misspecified
settings, the prequential Hyvärinen score is consistent for
model selection. Finally, motivated by an application to count-
valued data in a population dynamics context, we propose a
modified score for discrete observations that builds on recent
complete characterizations of proper scoring rules on discrete
spaces (McCarthy 1956; Hendrickson and Buehler 1971; Dawid,
Lauritzen, and Parry 2012; Dawid, Musio, and Columbu 2017).

This article is organized as follows. In Section 2, we consider
parametric models with tractable likelihoods. We present how
the prequential Hyvärinen score can be estimated via SMC
samplers, and show that it leads to consistent model selection,
under regularity assumptions. In Section 3, we generalize the
approach to nonlinear non-Gaussian state-space models, using
SMC2, and we present a simulation study with Lévy-driven
stochastic volatility models. In Section 4, we extend the pro-
posed criterion to discrete observations and compare diffu-
sion models for population dynamics. Possible limitations and
directions for future research are outlined in Section 5. Proofs,
implementation details, and additional simulations are provided
in the supplementary material. The R code producing the figures
is available at github.com/pierrejacob/bayeshscore.

1.2. Terminology and Notation

We will abbreviate the prequential Hyvärinen score to H-score.
Given two models M1 and M2, the difference of their H-scores
HT(M2) − HT(M1) will be termed the H-factor of M1 against
M2. We define N∗ = N\{0} and use the colon notation for tuples
of objects, for example,y1:t = (y1, . . . , yt) for all t ∈ N∗, with the
convention y1:0 = ∅. Unless specified otherwise, ∥ · ∥ denotes
the Euclidean norm. Each observation y = (y(1), . . . , y(dy))

⊤ is a
vector of dimension dy ∈ N∗ and takes values in Y ⊆ Rdy . Aside
from Section 4, the observations are assumed to be continuous
variables. Continuous probability distributions are assumed to
admit densities with respect to the Lebesgue measure. We let
P⋆ (resp.E⋆) denote the probability (resp.expectation) induced
by the data-generating mechanism of the stochastic process
(Yt)t∈N∗ . We use the abbreviation P⋆-a.s. for P⋆-almost surely.
Assuming its existence, we let p⋆ denote the probability density
or mass function associated with P⋆. When dealing concurrently
with several models from a set M = {Mj : j = 1, . . . , k},
we use the subscript j ∈ {1, . . . , k} to condition on a partic-
ular model. Each candidate model Mj is parameterized by a
parameter θj in a space Tj ⊆ Rdθj of dimension dθj ∈ N∗.
Explicit dependence on models is dropped from the notation
whenever possible. For a differentiable function f on Y, we
use ∂f (yt)/∂yt(k) or ∂f (y)/∂y(k)

∣∣
y=yt

to denote the kth partial
derivative of f evaluated at yt ∈ Y. Hereafter, Gamma(α, β)

distributions with shape α > 0 and rate β > 0 have density
x -→ βα((α)−1xα−1e−βx for x > 0; a scaled inverse chi square
distribution with degrees of freedom ν > 0 and scale s > 0,
denoted by Inv-χ2(ν, s2), corresponds to the distribution of the
inverse of a Gamma(ν/2, s2ν/2) variable, and has density x -→
(ν/2)ν/2((ν/2)−1sνx−(ν/2+1)e−νs2/(2x) for x > 0; NB(m, v),
with v > m > 0, denotes a negative binomial distribution
parameterized by its mean and variance, that is, with probability
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mass function k -→
(k+r−1

k
)
(1 − p)rpk for k ∈ N, where

p = (v − m)/m and r = m2/(v − m).

2. H-score for Models with Tractable Likelihoods
We first describe how the H-score can be estimated with SMC
samplers, before turning to asymptotic properties and numeri-
cal investigations. The H-score of a model M, defined in Equa-
tion (2), can be rewritten as

HT(M) =
T∑

t=1

dy∑

k=1

⎛

⎝ 2 ∂2 log p(yt|y1:t−1)

∂yt2
(k)

+
(

∂ log p(yt|y1:t−1)

∂yt(k)

)2
⎞

⎠ .

(3)

The marginal predictive densities appearing in Equation (3)
correspond to integrals with respect to posterior distributions,
as p(yt|y1:t−1) =

∫
p(yt|θ , y1:t−1) p(θ |y1:t−1) dθ .

2.1. Computation of the H-score Using SMC

As noted in Dawid and Musio (2015), an interchange of dif-
ferentiation and integration under appropriate regularity condi-
tions (see Section S6 of the supplementary material) shows that
HT(M) is equal to

T∑

t=1

dy∑

k=1

(

2 Et

[
∂2 log p(yt|y1:t−1, +)

∂yt2
(k)

+
(

∂ log p(yt|y1:t−1, +)

∂yt(k)

)2
⎤

⎦

−
(

Et

[
∂ log p(yt|y1:t−1, +)

∂yt(k)

])2
⎞

⎠, (4)

where the conditional expectations Et are taken with respect to
the posterior distributions + ∼ p(dθ |y1:t). The terms of the
sum in Equation (4) might not be well-defined when improper
posterior distributions arise from improper priors. If τ denotes
the first index such that the posterior p(dθ |y1:τ ) is proper, then
we would redefine the H-score as

∑T
t=τ H

(
yt , p(dyt|y1:t−1)

)
.

This issue is not specific to the H-score, and for simplicity of
exposition, we will thereafter assume that posterior distributions
are proper after assimilating one observation.

In general, expectations with respect to p(dθ |y1:t) for all
successive t ≥ 1 can be consistently estimated using sequential
or annealed importance sampling (Neal 2001) and SMC
samplers (Chopin 2002; Del Moral, Doucet, and Jasra 2006). An
SMC sampler starts by sampling a set of Nθ particles θ (1:Nθ ) =
(θ (1), . . . , θ (Nθ )) independently from an initial distribution
q(dθ). The algorithm then assigns weights, resamples, and
moves these particles in order to approximate p(dθ |y1:t) for
each t ≥ 1. We can move samples from a posterior distribution
to the next by successively targeting intermediate distributions
whose densities are proportional to p(θ |y1:t−1)p(yt|y1:t−1, θ)γt,j ,
where 0 = γt,0 < γt,1 < . . . < γt,Jt = 1 with Jt ∈ N∗. The
temperatures γt,j can be determined adaptively to maintain a

chosen level of nondegeneracy in the importance weights of the
particles, for example,by forcing the effective sample size to stay
above a desired threshold or by imposing a minimum number
of unique particles. The resampling steps can be performed in
various ways (see Douc and Cappé 2005; Murray, Lee, and Jacob
2016; Gerber, Chopin, and Whiteley 2017), and the move steps
with any Markov chain Monte Carlo method. In the numerical
experiments below, resampling is done with the Srinivasan
Sampling Process (SSP, Gerber, Chopin, and Whiteley 2017),
and move steps are independent Metropolis–Hastings steps
with proposals obtained as mixtures of Normal distributions
fitted on the current weighted particles. The initial distribution
q(dθ) can be taken as the uniform distribution on a set (e.g.,
Fearnhead and Taylor 2013), as the prior distribution p(dθ)

when it is proper, or more generally as an approximation of the
first proper posterior distribution.

Sequential estimation of the H-score can thus be achieved
at a cost comparable to that of estimating the log-evidence.
Indeed, both can be obtained from the same SMC runs. How-
ever, numerical experiments suggest that the estimator of the
H-score tends to have a larger relative variance than the esti-
mator of the log-evidence, for a given number of particles. This
can be explained informally as follows. For the evidence, the
Monte Carlo approaches approximate expectations of the form
E[p(yt|y1:t−1, +)] with respect to the posterior p(dθ |y1:t−1).
On the other hand, the H-score involves expectations such
as E[∇y log p(yt|y1:t−1, +)] with respect to p(dθ |y1:t). When t
is large, the distributions p(dθ |y1:t−1) and p(dθ |y1:t) are sim-
ilar, whereas the integrands θ -→ p(yt|y1:t−1, θ) and θ -→
∇y log p(yt|y1:t−1, θ) are different. In some generality, the first
type of integrands will be easier to integrate than the sec-
ond one, for example, when the former is bounded in θ while
the latter is polynomial in θ , as in Normal location models
(see Section 2.3).

2.2. Consistency of the H-score for iid Settings

Irrespective of model misspecification, the H-score can be justi-
fied for finite samples since it results from assessing predictions
with a scoring rule that satisfies desirable properties such as pro-
priety, locality, and homogeneity (Parry, Dawid, and Lauritzen
2012; Ehm and Gneiting 2012). Moreover, under regularity
conditions, we can show that the H-score also satisfies sensible
asymptotic properties: as the number of observations grows,
choosing the model with the smallest H-score eventually leads
to selecting the model closest to the data-generating process in a
certain sense, as made precise below. Some general perspective
on consistency of prequential scores can be found in Dawid and
Musio (2015).

Here we consider iid models and assume that (Yt)t∈N∗ is a
sequence of iid observations drawn from p⋆. State-space models
and more general data-generating processes will be covered in
Section 3.2. For simplicity, we focus on continuous univariate
(dy = 1) observations. Our results will only be meaningful for
models that are either nonnested, or nested with at most one
model being well-specified. The case of well-specified nested
models is discussed at the end of this section, with more details
in Section S7.4 of the supplementary material. Our consistency
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result relies on the expression

HT(M) =
( T∑

t=1
Et

[
H

(
yt , p(dyt|y1:t−1, +)

)]
)

+
( T∑

t=1
Vt

[
∂ log p(yt|y1:t−1, +)

∂yt

])

, (5)

which follows directly from rearranging the terms in Equation
(4), where Et and Vt , respectively, denote conditional expec-
tations and variances with respect to + ∼ p(dθ |y1:t). The key
insight is that, in non-nested settings, as the number of obser-
vations grows and the posterior distribution p(dθ |y1:T) concen-
trates to a point mass, the sum of the conditional expectations in
Equation (5) will eventually dominate and drive the behavior of
the H-score, while the sum of the conditional variances acts as
a penalty term that becomes negligible. This penalty term only
becomes crucial when comparing well-specified nested models,
as discussed at the end of this section.

The result below considers model selection consistency for
two iid models M1 and M2, each describing the data, respec-
tively, as Y1, . . . , YT | θj

iid∼ pj(dy|θj), with parameter θj ∈ Tj and
prior density pj(θj), for j ∈ {1, 2}.

Theorem 1. Assume (Yt)t∈N∗ is a sequence of iid draws from
p⋆. Assume M1 and M2 both satisfy the following conditions,
where models are omitted from the notation and probabilistic
statements are P⋆-almost sure:
(a) For all t ∈ N∗ and y1:t ∈ Yt , θ -→ p(yt|θ) p(θ |y1:t−1) is

integrable on T.

(b) For all t ∈ N∗ and θ ∈ T, yt -→ p(yt|θ) is twice
differentiable on Y.

(c) For all t ∈ N∗, there exist integrable functions h1,t and h2,t
such that, for all (y1:t , θ) ∈ Yt×T,

∣∣p(θ |y1:t−1) ∂p(yt|θ)/∂yt
∣∣

≤ h1,t(θ) and
∣∣p(θ |y1:t−1) ∂2p(yt|θ)/∂yt2∣∣ ≤ h2,t(θ).

(d) There exists θ⋆ ∈ T such that, if +t ∼ p(dθ |Y1:t) for all
t ∈ N∗, then +t

D−−−−→t→+∞ θ⋆.

(e) There exist a constant L > 0 and a neighborhood Uθ⋆ of θ⋆

such that, for all t ∈ N∗, θ -→ H
(
Yt , p(dyt|θ)

)
and θ -→

∂ log p(Yt|θ)/∂yt are L-Lipschitz functions.

(f) There exist α1 > 1 and α2 > 1 such that supt∈N∗ E
[
|H

(
Yt , p

(dyt|+t)
)
|α1 | Y1:t

]
< +∞ and supt∈N∗ E

[(
∂ log p(Yt|+t)/

∂yt
)2 α2 | Y1:t

]
< +∞, where the conditional expectations

are with respect to the posterior distribution +t ∼
p(dθ |Y1:t).

(g) E⋆

[∣∣H
(
Y , p(dy|θ⋆)

)∣∣
]

< +∞ and p⋆(y) ∂ log p(y|θ⋆)/∂y
−−−−−→|y|→+∞ 0.

We also assume that the data-generating density p⋆ is such that
y -→ p⋆(y) is twice differentiable and E⋆[

∣∣H
(
Y , p⋆(dy)

)∣∣] <

+∞. If all the conditions are met, then we have
1
T

(
HT(M2) − HT(M1)

)

P⋆−a.s.−−−−→T→+∞ DH(p⋆, M2) − DH(p⋆, M1) , (6)

where, for each j ∈ {1, 2}, the quantity

DH(p⋆, Mj) = E⋆

[
H

(
Y , pj(dy|θ⋆

j )
)]

− E⋆

[
H

(
Y , p⋆(dy)

)]

(7)

satisfies DH(p⋆, Mj) ≥ 0, with DH(p⋆, Mj) = 0 if and only if
pj(y|θ⋆

j ) = p⋆(y) for all y ∈ Y.

The assumptions listed in Theorem 1 are strong, which
allows for more intuitive proofs. Our numerical experiments
suggest that Equation (6) can hold when these conditions are
not met (see, e.g., Section 2.3). Conditions (a) to (c) ensure the
validity of Equation (5); (d) assumes the concentration of the
posterior to a point mass; (e) to (f) ensure suitable convergence
of posterior moments; and (g) ensures the strict propriety of the
H-score and its definiteness for p⋆. Further discussion on these
conditions and detailed proofs are provided in Section S7 of the
supplementary material.

Theorem 1 provides insights into the asymptotic behavior of
the H-score. Using integration by parts, we have

DH(p⋆, Mj) =
∫ (

∂ log p⋆(y)
∂y −

∂ log pj(y|θ⋆
j )

∂y

)2

p⋆(y)dy,

(8)

so that DH(p⋆, Mj) can be interpreted as a divergence between
the data-generating distribution p⋆ and model Mj. As long as
E⋆

[
H

(
Y , p1(dy|θ⋆

1 )
)]

̸= E⋆

[
H

(
Y , p2(dy|θ⋆

2 )
)]

, the H-score
asymptotically chooses the model closest to the data-generating
distribution p⋆ with respect to the divergence DH. In par-
ticular, if M1 is well-specified and M2 is misspecified, then
DH(p⋆, M1) = 0 < DH(p⋆, M2), which leads to HT(M2) −
HT(M1) > 0 for all sufficiently large T, P⋆-almost surely. In
other words, the H-score eventually chooses a well-specified
model M1 over a misspecified model M2.

The divergence DH(p⋆, Mj) appearing in (8) is sometimes
referred to as the relative Fisher information divergence between
p⋆ and pj(dy|θ⋆

j ) (e.g.,Walker 2016; Holmes and Walker 2017). It
should be contrasted to the divergence associated with the log-
score: under similar assumptions, one can prove (e.g., Dawid
2011) that

1
T

((
− log p2(Y1:T)

)
−

(
− log p1(Y1:T)

))

P⋆−a.s.−−−−→T→+∞ KL(p⋆, M2) − KL(p⋆, M1),

where KL(p⋆, Mj) = E⋆

[
− log pj(Y|θ⋆

j )
]

− E⋆

[
− log p⋆(Y)

]

denotes the Kullback-Leibler divergence between p⋆ and
pj(dy|θ⋆

j ). In other words, the log-score − log pj(Y1:T) asymp-
totically favors the model that is the closest to p⋆ with respect
to the Kullback-Leibler divergence KL(p⋆, Mj), whereas the H-
score HT(Mj) asymptotically favors the model that is the closest
to p⋆ with respect to the divergence DH(p⋆, Mj).

When only one of the candidate models is well-specified, the
log-Bayes factor and the H-factor both agree on consistently
selecting it. When both M1 and M2 are misspecified, each cri-
terion selects a model according to its associated divergence.
Despite being related (e.g., Bobkov, Gozlan, Roberto, and Sam-
son 2014, and references therein), the geometries induced by
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these divergences differ, leading the log-Bayes factor and the
H-factor to select possibly different models (see case 3 in Sec-
tion 2.3). In the presence of informative priors, deciding which
score to use in such misspecified settings is then a matter of
preferences and further practical considerations; in this article
we focus on the case of vague priors for which Bayes factors are
not recommendable, as discussed earlier.

If E⋆

[
H

(
Y , p1(dy|θ⋆

1 )
)]

= E⋆

[
H

(
Y , p2(dy|θ⋆

2 )
)]

, the limit
in Equation (6) becomes 0 and calls for a more careful look
at the higher order penalty term formed by the conditional
variances in Equation (5). Such a refinement is needed if M1
is nested in M2, in the sense of Eq. (9) in Berger and Pericchi
(1996), and both models are well-specified. In other words, we
have T2 = {(θ1, η) ∈ /1 × /2} ⊆ R k1 × R k2−k1 and
T1 ⊆ /1 for some k1, k2 ∈ N with k2 > k1 > 0, and
there exists η⋆

1 ∈ /2 such that p1(y|θ1) = p2(y|θ1, η⋆
1) for

all (y, θ1) ∈ Y × T1. There also exists θ⋆
1 ∈ T1 such that

p⋆(y) = p1(y|θ⋆
1 ) = p2(y|θ⋆

2 ) for all y ∈ Y, where θ⋆
2 =

(θ⋆
1 , η⋆

1). The particular case of nested Normal linear models is
discussed in Sections 8 and 9 of Dawid and Musio (2015). Under
regularity conditions, and if the parameters are orthogonal such
that E⋆[∇η∇θ1 log p2(Y|θ⋆

1 , η⋆
1)] = 0, we conjecture that

HT(M2) − HT(M1) = δ21 log T + o(log T),

as T → ∞, in P⋆-probability, where the difference δ21 in model
dimensions appears as

δ21 = E⋆

[(
∇η

∂ log p2(Y|θ⋆
2 )

∂y

)⊤

E⋆[−∇2
η log p2(Y|θ⋆

2 )]−1
(

∇η
∂ log p2(Y|θ⋆

2 )

∂y

)]
> 0.

This would imply that HT(M2) − HT(M1) → +∞ as
T → +∞, in P⋆-probability, so that the H-score asymptotically
chooses the model M1 of smaller dimension, similarly to the
log-Bayes factor for which log p1(Y1:T) − log p2(Y1:T) =
(1/2)(k2 −k1) log T+o(log T) under suitable assumptions (e.g.,
Moreno, Girón, and Casella 2010; Rousseau and Taeryon 2012;
Chib and Kuffner 2016). Heuristic justification and numerical
illustration of this postulate are provided in Sections S7.4 and
S7.5 of the supplementary material. We leave more formal
studies of the H-score in nested well-specified settings for future
research.

As an aside, we need to contrast the prequential approach
described in Equation (2) with a batch approach, where
one would assess the predictive performance of model M
at once via Hbatch

T (M) = H
(
y1:T , pM(dy1:T)

)
. This batch

approach would allow approximations using standard Markov
chain Monte Carlo methods. However, the batch approach
is generally not consistent for model selection (Dawid and
Musio 2015, sec. 8.1). Therefore, the prequential framework
not only has a natural interpretation that relates to sequential
probability forecasts (Dawid 1984), but is also necessary for
consistency. This leads to the task of approximating all the
successive predictive distributions p(dyt|y1:t−1), as described in
Section 2.1. This distinction does not arise for the log-score, for
which we always have − log p(y1:T) = −∑T

t=1 log p(yt|y1:t−1).
One consequence of the sequential approach is that different

orderings of the observations lead to different sequences of
predictive distributions, hence yielding different values of
the H-score. This might be undesirable in settings where the
observations are not naturally ordered (e.g., iid or spatial data).
For large samples, this issue is mitigated by the convergence of
rescaled H-scores to limits that do not depend on the ordering
of the observations (see Theorem 1). For small samples, one
could average the H-score over different permutations of the
data, or use a random ordering of the data within each SMC run
(see Section 2.3), at the cost of extra computations.

2.3. Numerical Illustration with Normal Models

Inspired by Section 3.2. of O’Hagan (1995), we consider the two
Normal models

M1 : Y1, . . . , YT | θ1
iid∼ N

(
θ1, 1

)
, θ1 ∼ N

(
0, σ 2

0
)

,

M2 : Y1, . . . , YT | θ2
iid∼ N (0, θ2) , θ2 ∼ Inv-χ2 (

ν0, s2
0
)

.

The positive hyperparameters are chosen as σ 2
0 = 10, ν0 = 0.1,

and s2
0 = 1. We compare M1 and M2, using data generated

as Y1, . . . , YT
iid∼ N (µ⋆, σ 2

⋆ ), in the following four settings: (1)
(µ⋆, σ 2

⋆ ) = (1, 1), that is, M1 is well-specified while M2 is not;
(2) (µ⋆, σ 2

⋆ ) = (0, 5), that is,M2 is well-specified while M1 is not;
(3) (µ⋆, σ 2

⋆ ) = (4, 3), that is,both M1 and M2 are misspecified;
(4) (µ⋆, σ 2

⋆ ) = (0, 1), that is,both M1 and M2 are well-specified.
Conjugacy allows all the posterior distributions, scores, and

divergences to be computed in closed form. The posteriors
under M1 and M2 concentrate, respectively, around θ⋆

1 = µ⋆

and θ⋆
2 = σ 2

⋆ + µ2
⋆. We compute DH and the Kullback–Leibler

divergence for Normal densities analytically (Dawid and Musio
2015, sec. 6.1) and get the theoretical limits

DH(p⋆, M2) − DH(p⋆, M1) = µ2
⋆

σ 2
⋆

(
µ2

⋆ + σ 2
⋆

) −
(
σ 2

⋆ − 1
)2

σ 2
⋆

,

(9)
KL(p⋆, M2) − KL(p⋆, M1)

= 1
2

log
(

µ2
⋆ + σ 2

⋆

σ 2
⋆

)
−

(
σ 2

⋆ − 1
)
− log

(
σ 2

⋆

)

2
, (10)

which depend on the values of |µ⋆| and σ 2
⋆ . For each of the

four cases, we generate T = 1000 observations and perform
five runs of SMC with Nθ = 1024 particles to estimate the
log-Bayes factors and H-factors of M1 against M2. Each run
uses a different ordering of the data, sampled uniformly from
all the possible permutations. The results are shown in Fig-
ure 1. H-factors and log-Bayes factors are overlaid on the same
plots in order to track their evolution jointly, but their values
should not be directly compared. As expected in cases 1 and
2, the H-factor selects the well-specified model and diverges
to infinity at a linear rate, with respective slopes matching the
theoretical limits 0.5 and −3.2 from (9). Similar behavior is
obtained for the log-Bayes factor, which correctly diverges to
infinity at the same linear rate, with theoretical slopes given
by (10). In case 3, both models are misspecified, and Equa-
tions (9) and (10) with (µ⋆, σ 2

⋆ ) = (4, 3) yield DH(p⋆, M2) −
DH(p⋆, M1) ≈ −1.05 < 0 and KL(p⋆, M2) − KL(p⋆, M1) ≈
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Figure 1. Estimated log-Bayes factors (log-BF) and H-factors (HF) of M1 against M2, computed for 5 replications (thin solid lines), under four iid data-generating processes:
N (1, 1) (Case 1), N (0, 5) (Case 2), N (4, 3) (Case 3), and N (0, 1) (Case 4). In each plot, the observations are fixed but randomly ordered, so that the variability within each
factor is due to Monte Carlo error and random permutation of the data. See Section 2.3.
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Figure 2. Phase plane of d(p⋆ , M2)− d(p⋆ , M1) as a function of (|µ⋆|, σ 2
⋆ ), where d ∈ {DH , KL}. The four cases from Section 2.3 are indicated as triangles. The lines (solid

for DH , dashed for KL) are the sets of (|µ⋆|, σ 2
⋆ ) such that d(p⋆ , M2) = d(p⋆ , M1). The regions above (resp.below) the lines satisfy d(p⋆ , M2) > d(p⋆ , M1) (resp.<), that

is, M1 (resp.M2) is closer to p⋆ .

0.47 > 0. This leads the Bayes factor and the H-factor to
favor different misspecified models. In fact, when both M1 and
M2 are misspecified, there are infinitely many combinations
of (|µ⋆|, σ 2

⋆ ) ∈ R 2
+ for which DH(p⋆, M2) < DH(p⋆, M1)

whereas KL(p⋆, M2) > KL(p⋆, M1). Indeed, if we define the
boundary BH(σ 2

⋆ ) = |σ 2
⋆ − 1|(2 − σ 2

⋆ )−1/2 for σ 2
⋆ ∈ (0, 2) and

BH(σ 2
⋆ ) = +∞ for σ 2

⋆ ≥ 2, then DH(p⋆, M2) = DH(p⋆, M1)
(resp.> and <) for |µ⋆| = BH(σ 2

⋆ ) (resp.> and <). By contrast,
KL(p⋆, M2) = KL(p⋆, M1) if and only if |µ⋆| = BKL(σ 2

⋆ ),
where BKL(σ 2

⋆ ) = (exp
(
σ 2

⋆ − 1
)
− σ 2

⋆ )1/2 for all σ 2
⋆ > 0. Thus,

whenever BKL(σ 2
⋆ ) < |µ⋆| < BH(σ 2

⋆ ), the divergences DH and
KL disagree on which model is closer to p⋆. This is illustrated in
Figure 2. When both divergences are sensible, deciding which
one to use would require further considerations (see, e.g., Jew-
son et al. 2018). As explained in Section 1, the log-Bayes factor

might be inappropriate in the presence of vague priors. Looking
back at case 1 for example, since log pM1(y1:T) → −∞ when
σ0 → +∞, one could always specify a σ0 large enough such that
the log-Bayes factor would wrongly pick M2. On the other hand,
the choice of M1 by the H-factor remains unchanged when σ0
increases. This robustness is further illustrated in Section S2 of
the supplementary material.

Finally, in case 4, the theoretical slopes are exactly 0, while
the models are of equal dimensions, hence no model prevails.

3. H-score for State-Space Models

The H-score raises additional computational challenges in the
case of state-space models. State-space models, also known as
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hidden Markov models, are a flexible and widely used class of
time series models (Cappé, Moulines, and Rydén 2005; Douc,
Moulines, and Stoffer 2014), which describe the observations
(Yt)t∈N∗ as conditionally independent given a latent Markov
chain (Xt)t∈N∗ living in X ⊆ Rdx . A state-space model with
parameter θ ∈ T ⊆ Rdθ specifies an initial distribution
µθ (dx1) of the first state X1, a Markov kernel fθ (dxt+1|xt) for
the transition of the latent process, a measurement distribution
gθ (dyt|xt), and a prior distribution p(dθ) on the parameter.

3.1. Computation of the H-score Using SMC2

The conditional predictive distributions p(yt|y1:t−1, θ) appear-
ing in Equation (4) correspond to integrals over the latent states,
that is, p(yt|y1:t−1, θ) =

∫
p(xt|y1:t−1, θ) gθ (yt|xt) dxt , which are

in general intractable. Interchanging differentiation and inte-
gration under suitable regularity conditions yields the follow-
ing results, which are similar to Fisher’s and Louis’ identities
(Cappé, Moulines, and Rydén 2005, prop. 10.1.6), except that
differentiation here is with respect to the observation instead of
the parameter. We obtain for all θ ∈ T, all observed y1:T ∈ Y T ,
all k ∈ {1, . . . , dy}, and all t ∈ {1, . . . , T},

∂ log p(yt|y1:t−1, θ)

∂yt(k)
= Et

[
∂ log gθ (yt|Xt)

∂yt(k)

∣∣∣∣∣ θ

]

, (11)

∂2 log p(yt|y1:t−1, θ)

∂yt2
(k)

+
(

∂ log p(yt|y1:t−1, θ)

∂yt(k)

)2

= Et

⎡

⎣ ∂2 log gθ (yt|Xt)

∂yt2
(k)

+
(

∂ log gθ (yt|Xt)

∂yt(k)

)2
∣∣∣∣∣∣
θ

⎤

⎦, (12)

where the conditional expectations Et are with respect to Xt ∼
p(dxt|y1:t , θ). Proofs of Equations (11) and (12) under regular-
ity assumptions are presented in the supplementary material.
Applying Equations (11) and (12) to each term in Equation (4)
and using the tower property of conditional expectations yields

HT(M) =
T∑

t=1

dy∑

k=1

(

2 Et

[
∂2 log g+(yt|Xt)

∂yt2
(k)

+
(

∂ log g+(yt|Xt)

∂yt(k)

)2
⎤

⎦

−
(

Et

[
∂ log g+(yt|Xt)

∂yt(k)

])2
⎞

⎠, (13)

where the expectations Et are with respect to the joint poste-
rior distributions of (+, Xt) given the observations y1:t , whose
densities are given by p(θ , xt|y1:t) = p(θ |y1:t)p(xt|y1:t , θ).

For many state-space models, the log-derivatives of the
measurement density gθ (y|x) can be evaluated at any point
(θ , y, x) ∈ T × Y × X. Assuming that we can simulate the
transition kernel of the latent process, we can use SMC2 (Fulop
and Li 2013; Chopin, Jacob, and Papaspiliopoulos 2013) to

consistently estimate all the conditional expectations appearing
in Equation (13). At each time t ∈ {1, . . . , T}, SMC2 produces a
set of weighted particles targeting the joint density p(θ , xt|y1:t),
which can be used to update the H-score.

3.2. Consistency of the H-score for State-Space Models

We revisit the asymptotic consistency results of the H-score in
the case of state-space models. The observations are no longer
assumed to be iid and we consider two candidate models, M1
and M2. An additional difficulty in proving consistency of the
H-score with dependent observations lies in the approximation
of HT(Mj) by a stationary analog, to which ergodic theorems
will apply. As in the iid setting, we only give results for univariate
continuous observations.

Theorem 2. Assume (Yt)t∈N∗ is ergodic and strongly stationary,
so that we can artificially extend its set of indices to negative
integers and consider the two-sided process (Yt)t∈Z. Assume M1
and M2 both satisfy the following conditions, where models are
omitted from the notation and probabilistic statements are P⋆-
almost sure:

(a) For all t ∈ N∗ and y1:t ∈ Yt , θ -→ p(yt|θ) p(θ |y1:t−1) is
integrable on T.

(b) For all t ∈ N∗ and θ ∈ T, yt -→ p(yt|θ) is twice
differentiable on Y.

(c) For all t ∈ N∗, there exist integrable functions h1,t and h2,t
such that, for all (y1:t , θ) ∈ Yt×T,

∣∣p(θ |y1:t−1) ∂p(yt|θ)/∂yt
∣∣

≤ h1,t(θ) and
∣∣p(θ |y1:t−1) ∂2p(yt|θ)/∂yt2∣∣ ≤ h2,t(θ).

(d) For all t ∈ N∗ and (y1:t , θ) ∈ Yt × T, xt -→
p(xt|y1:t−1, θ) gθ (yt|xt) is integrable on X.

(e) For all t ∈ N∗ and (θ , xt) ∈ T × X, yt -→ gθ (yt|xt) is twice
differentiable on Y.

(f) There exist integrable functions h3,t and h4,t such that, for all
(y1:t , θ , xt) ∈ Yt × T × X,

∣∣p(xt|y1:t−1, θ)∂gθ (yt|xt)/∂yt
∣∣ ≤

h3,t(xt) and
∣∣p(xt|y1:t−1, θ)∂2gθ (yt|xt)/∂y2

t
∣∣ ≤ h4,t(xt).

(g) For all t ∈ N∗, there exists θ⋆ ∈ T such that, if +t ∼
p(dθ |Y1:t) for all t ∈ N∗, then +t

D−−−−→t→+∞ θ⋆.

(h) There exist a constant L > 0 and a neighborhood Uθ⋆ of θ⋆

such that, for all t ∈ N∗, θ -→ H
(
Yt , p(dyt|Y1:t−1, θ)

)
and

θ -→ ∂ log p(Yt|Y1:t−1, θ)/∂yt are L-Lipschitz functions.

(i) There exist α1 > 1 and α2 > 1 such that supt∈N∗ E
[
|H

(
Yt ,

p(dyt|Y1:t−1, +t)
)
|α1 | Y1:t

]
< +∞ and supt∈N∗ E

[(
∂ log

p(Yt|Y1:t−1, +t)/∂yt
)2 α2 | Y1:t

]
< +∞, where the condi-

tional expectations are with respect to the posterior distri-
bution +t ∼ p(dθ |Y1:t).

(j) There exists a dominating probability measure η on X
such that the transition kernel fθ⋆(dxt+1|xt) has density
νθ⋆(xt+1|xt) = (dfθ⋆(·|xt)/dη)(xt+1) with respect to η.

(k) There exist positive constants σ− and σ+ such that, for
all (xt , xt+1) ∈ X × X, the transition density νθ⋆(xt+1|xt)
satisfies 0 < σ− < νθ⋆(xt+1|xt) < σ+ < +∞.
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(l) For all yt ∈ Y, the integral
∫

X gθ⋆(yt , xt) η(dxt) is bounded
away from 0 and +∞.

(m) b = sup
x∈X
y∈Y

∣∣∣∣∣
∂2 log gθ⋆ (y|x)

∂y2 +
(

∂ log gθ⋆ (y|x)

∂y

)2
∣∣∣∣∣ < +∞ and c =

sup
x∈X
y∈Y

∣∣∣∣
∂ log gθ⋆ (y|x)

∂y

∣∣∣∣ < +∞.

(n) sup
x∈X
y∈Y

gθ⋆(y|x) < +∞ and E⋆

[∣∣log
(∫

X gθ⋆(Y1|x)νθ⋆(dx)
)∣∣]

< +∞.

(o) The conditional density y1 -→ p⋆(y1|Y−∞:0) of Y1
given (Yt)t≤0 is well-defined and twice differentiable, and
E⋆

[∣∣H
(
Y1, p⋆(dy1|Y−∞:0)

)∣∣
]

< +∞.

If these conditions are met, we may define, for each j ∈ {1, 2},
the quantity

DH(p⋆, Mj) = E⋆

[
H

(
Y1, pj(dy1|Y−∞:0, θ⋆

j )
)]

− E⋆

[
H

(
Y1, p⋆(dy1|Y−∞:0)

)]
, (14)

where pj(y1|Y−∞:0, θ⋆
j ) is the provably well-defined conditional

density of Y1 given (Yt)t≤0 under Mj and θ⋆
j . Under these

conditions, we have
1
T

(
HT(M2) − HT(M1)

) P⋆−a.s.−−−−→T→+∞ DH(p⋆, M2) − DH(p⋆, M1) .
(15)

If p⋆(y1|Y−∞:0) ∂ log p(y1|Y−∞:0, θ⋆)/∂y1
P⋆−a.s.−−−−−−→|y1|→+∞ 0, then we

have DH(p⋆, Mj) ≥ 0, with DH(p⋆, Mj) = 0 if and only if
pj(y1|Y−∞:0, θ⋆

j ) = p⋆(y1|Y−∞:0), P⋆-almost surely.

Conditions (a) to (c) ensure the validity of Equation (5);
(d) to (f) ensure the validity of (11) and (12); (g) assumes the
concentration of the posterior to a point mass; (h) to (i) yield
suitable convergence of posterior moments; (j) to (l) ensure the
forgetting propriety of the latent Markov chain and the H-score;
(m) to (n) relate to the well-definiteness of the conditional den-
sity pj(y1|Y−∞:0, θ⋆

j ); finally, (o) and the last boundary condition
ensure that the H-score is strictly proper and well-defined for
p⋆. Further discussion on these conditions and detailed proofs
is provided in Section S7 of the supplementary material.

For state-space models, posterior concentration results have
been derived in specific cases (e.g., Lijoi, Prünster, and Walker
2007; De Gunst and Shcherbakova 2008; Shalizi 2009; Gassiat
and Rousseau 2014; Douc, Moulines, and Stoffer 2014; Douc,
Olsson, and Roueff 2016, and references therein). However, to
the best of our knowledge, general results on posterior concen-
tration for misspecified state-space models have yet to be estab-
lished. As a consequence, our proof of Theorem 2 uses posterior
concentration as a working assumption. Our numerical exam-
ples suggest that concentration of posterior distributions can
be observed in practice, even for complex state-space models
(see posterior density plots in Section S4 of the supplementary
material). Further research on Bayesian asymptotics in state-
space models might provide more theoretical understanding of
such phenomena.

3.3. Illustration with Lévy-Driven Stochastic Volatility
Models

In this simulation study we illustrate the consistency of the
H-score in nonlinear, non-Gaussian state-space models with
continuous observations. A simpler example with linear Gaus-
sian state-space and ARMA models can be found in Section S3
of the supplementary material. Here we consider Lévy-driven
stochastic volatility models (Barndorff-Nielsen and Shephard
2001, 2002). These models feature intractable transition ker-
nels that can only be simulated, and describe the joint evo-
lution of the log-returns Yt and the instantaneous volatility
Vt of a financial asset. The former is modeled as a contin-
uous time process driven by a Brownian motion, while the
latter is modeled as a Lévy process. Given a triplet of param-
eters (λ, ξ , ω), we can generate random variables (Vt , Zt)t≥1
recursively as

k ∼ Poisson
(
λξ 2/ω2) ; C1:k

iid∼ Unif(t − 1, t);
E1:k

iid∼ Exp
(
ξ/ω2) ; Z0 ∼ Gamma

(
ξ 2/ω2, ξ/ω2) ;

Zt = e−λZt−1 + ∑k
j=1 e−λ(t−Cj)Ej;

Vt = 1
λ

(
Zt−1 − Zt + ∑k

j=1 Ej
)

.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(16)

The first model (M1) describes the volatility as driven by a single
factor, expressed in terms of a finite rate Poisson process.

M1:(Vt , Zt) from Equation (16) given (λ, ξ , ω); Xt = (Vt , Zt);
Yt | Xt ∼ N (µ + βVt , Vt) ; with independent priors λ ∼
Exp(1); ξ , ω2 iid∼ Exp (1/5) ; µ, β

iid∼ N (0, 10).

The second model (M2) introduces an additional independent
component to drive the behavior of the volatility, leading to the
multifactor model below.

M2:(Vi,t , Zi,t) from Equation (16) independently for i ∈ {1, 2}
given (λi, ξwi, ωwi), with (w1, w2) = (w, 1 − w); Xt =
(V1,t , V2,t , Z1,t , Z2,t); Yt | Xt ∼ N (µ + βVt , Vt) where
Vt = V1,t + V2,t ; with independent priors λ1 ∼ Exp(1);
λ2−λ1 ∼ Exp (1/2); w ∼ Unif(0, 1); ξ , ω2 iid∼ Exp (1/5)

; µ, β
iid∼ N (0, 10).

For model M1, we can prove that there exist values of
θ = (λ, ξ , ω, µ, β) such that E[ |∂ log gθ (y1|X1)/∂y1| ] =
+∞, which prevents the use of Equations (11) and (12) to
estimate the H-score of model M1. When Equations (11)
and (12) do not hold, we can directly estimate the partial
derivatives of ỹt -→ p(ỹt|y1:t−1, θ) at the observed yt , by using
approximate draws from the conditional predictive distribution
p(dyt|y1:t−1, θ). Approximate draws from p(dyt|y1:t−1, θ)

can be obtained from a run of SMC 2, as long as one can
sample from the measurement distribution gθ (dyt|xt). For
a chosen bandwidth h > 0 (e.g., Hardle, Marron, and
Wand, 1990; Tsybakov, 2009, sec. 1.11) and a twice contin-
uously differentiable kernel K integrating to 1, for example,
a standard Gaussian kernel K(u) = (2π)−1/2 exp(−u2/2),
we can use n draws ỹ(1)

t , . . . , ỹ(n)
t from p(dyt|y1:t−1, θ) to

consistently estimate p(yt|y1:t−1, θ) by the kernel density



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

O
bservations

log−B
F

 1 vs. 2
H

F
 1 vs. 2

0 250 500 750 1000

−2

−1

0

1

2

3

0

2

4

6

0

50

100

150

200

Time (number of observations)

Figure 3. Top panel: log-returns simulated from model M1 with parameters λ = 0.01, ξ = 0.5, ω2 = 0.0625, µ = 0, and β = 0. Middle and bottom panels: estimated
log-Bayes factor (log-BF) and H-factor (HF) of M1 against M2, computed for 15 replications (thin solid lines), along with the average scores across replications (thick solid
lines). In each plot, the variability within each factor is due to Monte Carlo error. See Section 3.3.

estimator p̂(yt|y1:t−1, θ) = (nh)−1 ∑n
i=1 K((yt − ỹ(i)

t )/h). This
kernel density estimator is twice differentiable with respect to
yt , hence we can respectively use ∂ p̂(yt|y1:t−1, θ)/∂yt(k) and
∂2 p̂(yt|y1:t−1, θ)/∂yt2

(k) as consistent estimators of the partial
derivatives ∂p(yt|y1:t−1, θ)/∂yt(k) and ∂2p(yt|y1:t−1, θ)/∂yt2

(k),
as n → +∞ and h → 0 at an appropriate rate (e.g.,
Bhattacharya 1967).

We simulate T = 1000 observations from a single-factor
Lévy-driven stochastic volatility model with parameters λ =
0.01, ξ = 0.5, ω2 = 0.0625, µ = 0, and β = 0, following
the simulations of Barndorff-Nielsen and Shephard (2002). The
H-factor of M1 against M2 is computed for 15 replications of
SMC2, using Nθ = 1024 particles in θ , and an adaptive number
of particles in x starting at Nx = 128. The kernel density
estimation is performed with a Gaussian kernel, using n = 1024
predictive draws and h = 0.1. The estimated log-Bayes factor
and H-factor of M1 against M2 are plotted in Figure 3. Here
the models are nested and well-specified, but their dimensions
differ. We see that both criteria correctly select the smaller model
M1. As mentioned in Section 2.1, the estimated H-factor tends
to have a larger relative variance than the estimated log-Bayes
factor, especially in the presence of extreme observations (e.g.,
at times 454 and 656), and might thus call for a larger number
of particles.

4. H-score for Discrete Observations

Motivated by an application in population dynamics (Sec-
tion 4.2), we propose an extension of the H-score to dis-
crete observations. We assume that each observation y =
(y(1), . . . , y(dy))

⊤ takes finite values (i.e., ∥y∥ < +∞) in
some discrete space Y = !a1, b1 " × · · · × !ady , bdy ", where
!ak, bk " = [ak, bk] ∩ Z and ak, bk ∈ Z ∪ {−∞, +∞}, with

ak < bk for all k ∈ {1, . . . , dy}. For ease of exposition, assume
for now that bk − ak ≥ 3 for all k ∈ {1, . . . , dy}.

4.1. Extension of the H-score to Discrete Observations

Let ek denote the canonical vector of Zdy that has all coordinates
equal to 0 except for its kth coordinate that equals 1. For all y ∈
Y, all nonnegative functions p on Y, and all k ∈ {1, . . . , dy}, we
define ∂k p(y) = (p(y + ek) − p(y − ek))/2 and ∂k log p(y) =
∂k p(y)/p(y). We define the score

HD(y, p) =
dy∑

k=1
HD

k (y, p) , (17)

where HD
k (y, p) = 2 ∂k

(
∂k log p(y)

)
+

(
∂k log p(y)

)2 if ak +
2 ≤ y(k) ≤ bk − 2. At the boundaries, we define HD

k (y, p),
respectively, as ∂k log p(y + ek), ∂k log p(y + ek)+

(
∂k log p(y)

)2,
−∂k log p(y − ek) +

(
∂k log p(y)

)2, and −∂k log p(y − ek) for
y ∈ {ak, ak + 1, bk − 1, bk}.

The expression of HD
k can be regarded as a discrete analog of

the H-score where the partial derivatives are replaced by central
finite differences. Proper scores for discrete observations can
be entirely characterized as super-gradients of concave entropy
functions (McCarthy 1956; Hendrickson and Buehler 1971;
Dawid, Lauritzen, and Parry 2012). Using this characterization,
we can prove that HD is a proper scoring rule.

If bk = ak + 1 (e.g., for binary data) or bk = ak + 2, we could
still define HD

k by ignoring the cases y(k) = ak + 1, or y(k) =
bk − 1, or both. Alternatively, we could use forward differences.
All these definitions lead to scores that meet the requirements
of being insensitive to prior vagueness, while being proper and
local. Deciding which one to use is then a matter of further
considerations, left for future research. The construction of HD
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Figure 4. Top panel: double transect counts of red kangaroos. Middle and bottom panels: estimated log-scores and H-scores of M1 (circles), M2 (triangles), and M3 (squares),
for 5 replications (thin solid lines), along with the average scores across replications (thick lines with shapes). The log-scores are rescaled by the number of observations for
better readability. The variability within each model is due to Monte Carlo error. See Section 4.2.

and the proof of its propriety are detailed in Section S5 of the
supplement.

4.2. Diffusion Models for Population Dynamics of Red
Kangaroos

We illustrate the H-score for discrete observations by comparing
three nonlinear non-Gaussian state-space models, describing
the dynamics of a population of red kangaroos (Macropus rufus)
in New South Wales, Australia. These models were compared
in Knape and de Valpine (2012) using Bayes factors, although
the authors acknowledged the undesirable sensitivity of their
results to their choice of prior distributions. The data (Caughley,
Shepherd, and Short 1987) is a time series of 41 bi-variate
observations (Y1,t , Y2,t), formed by double transect counts of
red kangaroos, measured between 1973 and 1984 (see Fig-
ure 4). The small number of observations calls for a criterion
that is principled for finite samples, contrarily to, for example,
the Bayesian information criterion. The models are nested and
will be referred to as M1, M2, and M3, by decreasing order
of complexity. The largest model (M1) is a logistic diffusion
model. Simpler versions include an exponential growth model
(M2) and a random-walk model (M3). In these models, a latent
population size (Xt) follows a stochastic differential equation
(see further motivation in Dennis and Costantino 1988; Knape
and de Valpine 2012). Each model is specified below, where
(Wt)t≥0 denotes a standard Brownian motion.

M1: X1 ∼ LN(0, 5) ; dXt/Xt = (σ 2/2 + r − bXt) dt + σdWt ;
Y1,t , Y2,t | Xt , τ iid∼ NB(Xt , Xt + τX2

t ) ;
with independent priors; σ , τ , b iid∼ Unif(0, 10), r ∼
Unif(−10, 10).

M2: same as M1 with b = 0; with independent priors σ , τ
iid∼

Unif(0, 10), r ∼ Unif(−10, 10).

M3: same as M1 with b = 0 and r = 0; with independent priors
σ , τ

iid∼ Unif(0, 10).

We perform 5 runs of SMC2 to estimate the log-score and H-
score of each model, with an adaptive number Nx of latent
particles. We use Nθ = 16, 384 particles in θ , and Nx = 32 initial
particles in x. For model M1, we simulate the latent process using
the Euler-Maruyama method with discretization step !t =
0.001. The estimated log-scores and H-scores are shown in Fig-
ure 4. For better readability, the log-score is rescaled by the num-
ber of observations. Using the H-scores would lead to selecting
model M3, similarly to Knape and de Valpine (2012) who used
log-scores. Their conclusion was mitigated by the sensitivity of
the evidence to the choice of vague priors: for instance, changing
the prior on r in model M2 to Unif(−100, 100) effectively divides
the evidence of M2 by a factor 10. On the other hand, we have
found the impact of that change of prior on the H-score to be
indistinguishable from the Monte Carlo variation across runs.

5. Discussion

The H-factor constitutes a competitive alternative to the Bayes
factor. It is justified non-asymptotically since it relies on assess-
ing predictive performances using a proper local scoring rule,
and it is robust to the arbitrary vagueness of prior distributions.
It can be applied to a large variety of models — including
nonlinear non-Gaussian state-space models—and it can be esti-
mated sequentially with SMC or SMC2, at a cost comparable
to that of the Bayes factor. Using our R implementation, one
SMC or SMC2 replication took about a few minutes for each iid
Normal models with 1000 observations, about an hour for each
kangaroo population model with 41 observations, and about 5 h
for each stochastic volatility model with 1000 observations. In
all cases, the Monte Carlo error can be arbitrarily reduced by
increasing the number of particles Nθ (Section 3 in Chopin,
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Jacob, and Papaspiliopoulos 2013). However, the H-score puts
additional smoothness restrictions on the models, for example,
the twice differentiability of their predictive distributions with
respect to the observations (see Dawid and Musio 2015, and its
rejoinder). Thus, there are models for which the Bayes factor
is applicable but not the H-factor. We have also discussed in
Section 2.3 a case where the two criteria disagree, even asymp-
totically, contrarily to , for example, partial and intrinsic Bayes
factors (Santis and Spezzaferri 1999) that asymptotically agree
with the Bayes factor.

The sequential form of the score is problematic when obser-
vations are not naturally ordered, leading to different values of
the H-score for different orderings. This issue is mitigated by
the following facts: if the sample is large enough, any ordering
of the data would yield similar H-scores. For smaller sam-
ples, one could average the H-score over random permuta-
tions of the data. In that case, quantifying and controlling the
extra variability induced by these permutations would deserve
investigation.

For continuous observations and nonnested parametric
models satisfying strong regularity assumptions, we have
proved that the H-score leads to consistent model selection.
The asymptotic behavior of the H-factor is determined by
how close the candidate models are from the data-generating
process, where closeness is quantified by the relative Fisher
information divergence associated with the H-score, in con-
trast to the Kullback–Leibler divergence associated with the
Bayes factor. Our proofs rely on strong assumptions, but the
numerical experiments indicate that the results might hold in
more generality. Results for discrete observations and nested
well-specified models would be interesting topics of future
research. It would be interesting to study frequentist properties
of the proposed model choice procedure, for example, by
deriving confidence intervals for the difference in expected
H-scores. One could for instance complement the results of
Theorems 1 and 2 with central limit theorems, which would
enable further connections between Bayesian model selection
criteria and likelihood ratio tests as described, for example, in
Vuong (1989).

To deal with vague or improper priors, other alternatives to
the log-evidence include Bayesian cross-validation criteria, for
example,

∑T
t=1 log p(yt|y−t), where y−t = {ys : 1 ≤ s ≤

T and s ̸= t}. Such criteria would be applicable under weaker
smoothness assumptions on the predictive densities, while still
being robust to arbitrary vagueness of prior distributions. Effi-
cient computation of these criteria is challenging, and can be
envisioned for iid models using MCMC (Alqallaf and Gustafson
2001) or SMC methods (Bornn, Doucet, and Gottardo 2010);
the case of state-space models would be more challenging, due to
standard difficulties arising when splitting time series. Another
approach suggested in Kamary et al. (2014) is to cast model
selection as a mixture estimation problem, which also raises
questions in the case of time series.

Supplementary Materials

The supplementary material provides some guidance on the implementa-
tion of SMC methods to estimate H-scores, additional numerical experi-
ments, details on the extension of the Hyvärinen score to discrete obser-

vations, and formal proofs of the consistency of H-scores in non-nested
settings, along with heuristic arguments and illustrations for nested models.
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