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Provable Identifiability of ReLU Neural Networks
via LASSO Regularization
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Abstract

LASSO regularization is a popular regression tool to enhance the prediction accuracy of statistical models by
performing variable selection through the `1 penalty, initially formulated for the linear model and its variants. In
this paper, the territory of LASSO is extended to the neural network model, a fashionable and powerful nonlinear
regression model. Specifically, given a neural network whose output y depends only on a small subset of input
x, denoted by S?, we prove that the LASSO estimator can stably reconstruct the neural network and identify S?
when the number of samples scales logarithmically with the input dimension. This challenging regime has been well
understood for linear models while barely studied for neural networks. Our theory lies in an extended Restricted
Isometry Property (RIP)-based analysis framework for two-layer ReLU neural networks, which may be of independent
interest to other LASSO or neural network settings. Based on the result, we advocate a neural network-based variable
selection method. Experiments on simulated and real-world datasets show promising performance of the variable
selection approach compared with existing techniques.

Index Terms
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I. INTRODUCTION

Given n observations (yi,xi), i = 1, . . . , n, we often model them with the regression form of yi = f(xi) + ξi,
with an unknown function f , xi ∈ Rp being the input variables, and ξi representing statistical errors. A general
goal is to estimate a regression function f̂n close to f for prediction or interpretation. This is a challenging problem
when the input dimension p is comparable or even much larger than the data size n. For linear regressions, namely
f(x) = w>x, the least absolute shrinkage and selection operator (LASSO) [1] regularization has been established
as a standard tool to estimate f . The LASSO has also been successfully used and studied in many nonlinear models
such as generalized linear models [2], proportional hazards models [3], and neural networks [4]. The LASSO
regularization has also been added into the standard deep learning toolbox of many open-source libraries, e.g.,
Tensorflow [5] and Pytorch [6]. Despite the practical success of LASSO, its theoretical efficacy in neural networks is
barely studied. In particular, it remains unclear whether LASSO may be used for variable selection and subsequent
interpretations of a learned model.

Meanwhile, in the theoretical study of neural networks, there has been remarkable progress towards understanding
their approximation errors [7], [8] and generalization errors [9]–[11]. Nevertheless, the identifiability issue of neural
networks has been barely studied. Specifically, supposing that data observations are generated from a neural network
with only a few nonzero coefficients (or its proximity), the identifiability concerns the possibility of identifying those
coefficients. In practice, such sparsity of neural coefficients may be interpreted as a sparse set of input variables that
are genuinely relevant to the response, which may be of scientific interest.

In this paper, we consider the following class of two-layer ReLU neural networks.

Fr =

{
f : x 7→ f(x) =

r∑
j=1

ajrelu(w>j x+ bj), where aj , bj ∈ R,wj ∈ Rp
}
.

Here, p and r denote the input dimension and the number of neurons, respectively. We will assume that a neural
network model of parsimoniousness generates the data. In other words, some of the input signals are irrelevant to
explain y, or some of the network structure in f is redundant for modeling (y,x). Different forms of parsimoniousness
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were assumed in [9]–[11] to derive tight neural network risk bounds. We raise the following two questions to
understand the nonlinear nature of neural networks.

First, if the underlying system f admits a parsimonious representation, meaning that only a small set of input
variables, S?, is relevant, can we identify them with high probability given possibly noisy measurements (yi,xi),
for i = 1, . . . , n? Second, is such an S? estimable, meaning that it can be solved from an optimization problem
with high probability, even in small-n and large-p regimes?

To address the above questions, we will establish a theory for neural networks with the LASSO regularization by
considering the minimization problem

min
W ,a,b

‖W ‖1 subject to
1

n

n∑
i=1

(
yi −

r∑
j=1

ajrelu(w>j xi + bj)

)2

≤ σ2, (1)

which is an alternative version of the L1-regularization. More notational details will be introduced in Subsection III-B.
We theoretically show that the LASSO-type estimator can stably identify ReLU neural networks with sparse input

signals, up to a permutation of hidden neurons. Our result is rather general as it applies to noisy observations of y
and dimension regimes where the sample size n is much smaller than the number of input variables p. Our theory
gives positive answers to the above questions. The theory was derived based on new concentration bounds and
function analysis that may be interesting in their own right.

Inspired by the developed theory, we also propose a neural network-based variable selection method. The idea
is to use the neural system as a vehicle to model nonlinearity and extract significant variables. Through various
experimental studies, we show encouraging performance of the technique in identifying a sparse set of significant
variables from large dimensional data, even if the underlying data are not generated from a neural network. Compared
with popular approaches based on tree ensembles and linear-LASSO, the developed method is suitable for variable
selection from nonlinear, large-dimensional, and low-noise systems.

The rest of the paper is outlined as follows. Section II reviews the related work. Section III introduces the main
theoretical result and proposes an algorithm to perform variable selection. Section IV uses simulated and real-world
datasets to demonstrate the proposed theory and algorithm. Section V concludes the paper.

II. RELATED WORK

Linear models. The variable selection problem is also known as support recovery or feature selection in different
literature. Selection consistency requires that the probability of supp(ŵ) = supp(w) converges to one as n→∞.
The mainstream approach to selecting a parsimonious sub-model is to either solve a penalized regression problem
or iteratively pick up significant variables [12]. The existing methods differ in how they incorporate unique domain
knowledge (e.g., sparsity, multicollinearity, group behavior) or what desired properties (e.g., consistency in coefficient
estimation, consistency in variable selection) to achieve. For instance, consistency of the LASSO method [1] in
estimating the significant variables has been extensively studied under various technical conditions, including sparsity,
mutual coherence [13], restricted isometry [14], irrepresentable condition [15], and restricted eigenvalue [16].

Neural network models. Neural networks have been practically successful in modeling a wide range of nonlinear
systems. Analytically, a universal approximation theorem was established that shows any continuous multivariate
function can be represented precisely by a polynomial-sized two-layer network [17]. It was later shown that any
continuous function could be approximated arbitrarily well by a two-layer perceptron with sigmoid activation
functions [18], and an approximation error bound of using two-layer neural networks to fit arbitrary smooth
functions has been established [7], [8]. Statistically, generalization error bounds for two-layer neural networks [8]
and multi-layer networks [19]–[21] have been developed. From an optimization perspective, the parameter estimation
of neural networks could be cast into a tensor decomposition problem where a provably global optimum can be
obtained [22]–[24]. Very recently, a dimension-free Rademacher complexity to bound the generalization error for
deep ReLU neural networks was developed to avoid the curse of dimensionality [9]. It was proved that certain deep
neural networks with few nonzero network parameters could achieve minimax rates of convergence [10]. A tight
error bound free from the input dimension was developed by assuming that the data is generated from a generalized
hierarchical interaction model [11]. Overall, theoretical studies have primarily focused on the prediction risk bounds
or generalization error bounds of estimated neural networks.
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III. MAIN RESULT

A. Notation

Let uS denote the vector whose entries indexed in the set S remain the same as those in u, and the remaining
entries are zero. For any matrix W ∈ Rp×r, we define

‖W ‖1 =
∑

1≤k≤p,1≤j≤r
|wkj |, ‖W ‖F =

( ∑
1≤k≤p,1≤j≤r

w2
kj

)1/2

.

Similar notations apply to vectors. The inner product of two vectors is denoted as 〈u,v〉. Let wj denote the j-th
column of W . The sparsity of a matrix W refers to the number of nonzero entries in W . Let N (0, Ip) denote
the standard p-dimensional Gaussian distribution, and 1(·) denote the indicator function. The rectified linear unit
(ReLU) function is defined by relu(v) = max{v, 0} for all v ∈ R.

B. Formulation

Consider n independently and identically distributed (i.i.d.) observations {xi, yi}1≤i≤n satisfying

yi =

r∑
j=1

a?j · relu(w?>
j xi + b?j ) + ξi with xi ∼ N (0, Ip), (2)

where r is the number of neurons, a?j ∈ {1,−1}, w?
j ∈ Rp, b?j ∈ R, and ξi denotes the random noise or approximation

error obeying
1

n

n∑
i=1

ξ2i ≤ σ2. (3)

In the above formulation, the assumption a?j ∈ {1,−1} does not lose generality since a · relu(b) = ac · relu(b/c)
for any c > 0. The setting of Inequality (3) is for simplicity. If ξi’s are unbounded random variables, the theoretical
result to be introduced will still hold, with more explanations in the Appendix. The ξi’s are not necessarily i.i.d.,
and σ is allowed to be zero, which reduces to the noiseless scenario.

Let W ? = [w?
1, . . . ,w

?
r ] ∈ Rp×r denote the data-generating coefficients. The question we aim to address is

whether we can stably identify those nonzero elements, given that most entries in W ? are zero. The study of
neural networks from an identifiability perspective is essential. Unlike the generalizability problem that studies the
predictive performance of machine learning models, the identifiability may be used to interpret modeling results
and help scientists make trustworthy decisions. To illustrate this point, we will propose to use neural networks for
variable selection in Subsection III-D.

To answer the above question, we propose to study the following LASSO-type optimization. Let
(
Ŵ , â, b̂

)
be a

solution to the following optimization problem,

min
W ,a,b

‖W ‖1 subject to
1

n

n∑
i=1

(
yi −

r∑
j=1

aj · relu(w>j xi + bj)

)2

≤ σ2, (4)

within the feasible range a ∈ {1,−1}r, W ∈ Rp×r, and b ∈ Rr.
Intuitively, the optimization operates under the constraint that the training error is not too large, and the objective

function tends to sparsify W . Under some regularity conditions, we will prove that the solution is indeed sparse
and close to the truth.

Assumption 1. Suppose that for some constant B ≥ 1,

1 ≤ ‖w?
j‖2 ≤ B and |b?j | ≤ B ∀1 ≤ j ≤ r. (5)

In addition, we assume that for some constant ω > 0,

max
j,k=1,...,r,j 6=k

∣∣∣〈w?
j ,w

?
k〉
∣∣∣

‖w?
j‖2‖w?

k‖2
≤ 1

rω
. (6)
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The condition in (5) is a normalization only for technical convenience, since we can re-scale wj , bj , yi, σ
proportionally without loss of generality. Though this condition implicitly requires w?

j 6= 0 for all j = 1, . . . , r, it is
reasonable since it means the neuron j is not used/activated. The condition in (6) requires that the angle of any
two different coefficient vectors is not too small. This condition is analogous to a bounded-eigenvalue condition
often assumed for linear regression problems, where each w?j is understood as a column in the design matrix. This
condition is by no means mild or easy to verify in practice. Nevertheless, as we will mention soon, our focused
regime is large p, n but small r. In that case, the condition in (6) is still reasonable. For example, when r = 2
(which already corresponds to a nontrivial function class), this condition simply requires w?1 6= w?2. We will provide
another alternative assumption in the Appendix.

C. Main theorem

Our main result shows that if W ? is sparse, one can stably reconstruct a neural network when the number
of samples (n) scales logarithmically with the input dimension (p). We only focus on the varying n and p and
implicitly assume that the sparsity of W ? and the number of neurons r are fixed. A skeptical reader may ask how
the constants exactly depend on the sparsity and r. We will provide a more elaborated theorem in the Appendix.

Theorem 1. Under Assumption 1, there exist some universal constants c1, c2, c3 > 0 depending only (polynomially)
on the sparsity of W ? such that for any δ > 0, one has with probability at least 1− δ,

â = Πa? and ‖Ŵ −W ?Π>‖F + ‖b̂−Πb?‖2 ≤ c1σ (7)

for some permutation matrix Π, provided that

n > c2 log4
p

δ
and σ < c3. (8)

Remark 1 (Interpretations of Theorem 1). The permutation matrix Π is necessary since the considered neural
networks produce identical predictive distributions (of y conditional x) under any permutation of the hidden neurons.
The result states that the underlying neural coefficients can be stably estimated even when the sample size n is
much smaller than the number of variables p. Also, the estimation error bound is at the order of σ, the specified
noise level in (3).

Suppose that we define the signal-to-noise ratio (SNR) to be E‖x‖2/σ2. An alternative way to interpret the
theorem is that a large SNR ensures the global minimizer to be close to the ground truth with high probability. One
may wonder what if the σ < c3 condition is not met. We note that if σ is too large, the error bound in (7) would be
loose, and it is not of much interest anyway. In other words, if the SNR is small, we may not be able to estimate
parameters stably. This point will be demonstrated by experimental studies in Section IV.

The estimation results in Theorem 1 can be translated into variable selection results as shown in the following
Corollary 1. The connection is based on the fact that if i-th variable is redundant, the underlying coefficients
associated with it should be zero. Let w?

i,· denote the i-th row of W ?. Then,

S? = {1 ≤ i ≤ p : ‖w?
i,·‖2 > 0}

characterizes the “significant variables.” Corollary 1 states that the set of variables with non-vanished coefficient
estimates contains all the significant variables. The corollary also shows that with a suitable shrinkage of the
coefficient estimates, one can achieve variable selection consistency.

Corollary 1 (Variable selection). Let Ŝ0 and Ŝc1σ ⊆ {1, . . . , p} denote the sets of i’s such that ‖ŵi,·‖2 > 0 and
‖ŵi,·‖2 > c1σ, respectively. Under the same assumption as in Theorem 1, and min1≤i≤r‖w?

i,·‖2 > c1σ, for any
δ > 0, one has

P(S? ⊆ Ŝ0) ≥ 1− δ and P(S? = Ŝc1σ) ≥ 1− δ,

provided that n > c2 log4 pδ and σ < c3.

Considering the noiseless scenario σ = 0, Theorem 1 also implies the following corollary.
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Corollary 2 (Unique parsimonious representation). Under Assumption 1, there exists a universal constant c2 > 0
depending only on the sparsity of W ? such that for any δ > 0, one has with probability at least 1− δ,

â = Πa?, and Ŵ = W ?Π>, and b̂ = Πb?

for some permutation matrix Π, provided that n > c2 log4 pδ .

Corollary 2 states that among all the possible representations W in (2) (with ξi = 0), the one(s) with the smallest
L1-norm must be identical to W ? up to a column permutation with high probability. In other words, the most
parsimonious representation (in the sense of L1 norm) of two-layer ReLU neural networks is unique. This observation
addresses the questions raised in Section I.

Remark 2 (Sketch proof of Theorem 1). The proof of Theorem 1 is nontrivial and is included in the Appendix. Next,
we briefly explain the sketch of the proof. First, we will define what we refer to as D1-distance and D2-distance
between (W ,a, b) and (W ?,a?, b?). These distances can be regarded as the counterpart of the classical L1 and
L2 distances between two vectors, but allowing the invariance under any permutation of neurons (Remark 1). Then,
we let

∆n :=
1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

,

where (W ,a, b) is the solution of the problem in (4), and develop the following upper and lower bounds of it.

∆n ≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2 and ∆n ≥ c4 min

{
1

r
,D2

2

}
(9)

hold with probability at least 1 − δ, provided that n ≥ c5S
3r4 log4 pδ , for some constants c4, c5, c6, and S to be

specified. Here, the upper bound will be derived from a series of elementary inequalities. The lower bound is
reminiscent of the Restricted Isometry Property (RIP) [14] for linear models. We will derive it from the lower bound
of the population counterpart by concentration arguments, namely

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥ cmin

{
1

r
,D2

2

}
,

for some constant c > 0. The bounds in (9) imply that with high probability,

c4 min

{
1

r
,D2

2

}
≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

Using this and an inequality connecting D1 and D2, we can prove the final result.

D. Variable selection

To solve the optimization problem (4) in practice, we consider the following alternative problem,

min
W∈Rp×r,a∈Rr,b∈Rr

1

n

n∑
i=1

(
yi −

r∑
j=1

aj · relu(w>j xi + bj)

)2

+ λ‖W ‖1. (10)

The above optimization problem can be numerically solved using algorithms such as stochastic gradient descent
[25] and ADAM [26], available from many open-source libraries. We discuss some details regarding the variable
selection using LASSO regularized neural networks.

Tuning parameters. Given a labeled dataset in practice, we will need to tune hyper-parameters including the
penalty term λ, the number of neurons r, learning rate, and the number of epochs. We suggest the usual approach
that splits the available data into training and validation parts. The training data are used to estimate neural networks
for a set of candidate hyper-parameters. The most suitable candidate will be identified based on the predictive
performance on the validation data. A gap between the developed theory and the selection method in practice is
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that the selected number of hidden neurons r based on the training data may violate Assumption 1. Fortunately,
from our experimental studies, the results are not very sensitive to the choice of r.

Variable importance. Inspired by Corollary 1, we interpret the `2-norm of ŵi,· as the importance of the i-th
variable, for i = 1, . . . , p. Corollary 1 indicates that we can accurately identify all the significant variables in S?
with high probability if we correctly set the cutoff value c1σ.

Setting the cutoff value. In practice, we have no idea of the threshold c1σ. But it is conceivable that variables
with large importance are preferred over those with near-zero importance. This inspires us to cluster the variables into
two groups based on their importance. Here, we suggest two possible approaches. The first is to use a data-driven
approach such as k-means and Gaussian mixture model (GMM). The second is to manually set a threshold value
according to domain knowledge on the number of important variables.

IV. EXPERIMENTS

We perform experimental studies to show the promising performance of the proposed variable selection method.
We compare the variable selection accuracy and prediction performance of the proposed algorithm (‘NN’) with
several baseline methods, including the LASSO (‘LASSO’), orthogonal matching pursuit (‘OMP’), random forest
(‘RF’), and gradient boosting (‘GB’). The implementation follows Subsection III-D. In particular, we used ADAM
to optimize and GMM to select significant variables. The parameters grid of ‘NN’ is set as the penalty term
λ ∈ {0.1, 0.05, 0.01, 0.005}, the number of neurons r ∈ {20, 50, 100}, the learning rate in set {0.05, 0.01, 0.005},
and the number of epochs in set {200, 500, 1000}. We use the absolute value of the estimated coefficient as the
variable importance for ‘LASSO’ and ‘OMP’ and use the self-produced feature importance for the tree-based
methods. All the computation is done on the 2.3GHz Quad-Core Intel Core i5 with Intel Iris Plus Graphics 655.

A. Synthetic datasets

1) NN-generated dataset: The first experiment uses the data generated from Equation (2) with p = 100 variables
and r = 16 neurons. The first 10 rows of neural coefficients W are independently generated from the standard
uniform distribution, and the remaining rows are zeros, representing 10 significant variables. The neural biases b
are also generated from the standard uniform distribution. The signs of neurons, a, follow an independent Bernoulli
distribution. The training size is n = 500, and the test size is 2000. The noise level σ is set to be 0, 0.5, 1, and 5.
For each σ, we evaluate the number of correctly selected variables (‘TP’) and wrongly selected variables (‘FP’),
along with the test error. The procedure is independently replicated 100 times. The average numbers of selected
features are reported in Table I. The test errors are reported in Table II.

The results show that ‘NN’ has the best performance on both the selection and prediction. The performance of
tree-based methods is surprisingly undesirable. Also, when the noise level σ increases or the SNR decreases, all
the methods perform worse. Another observation is that the selection accuracy and the prediction performance are
positively associated for ‘NN’, but this is not the case for other methods.

2) Linear dataset: This experiment considers data generated from a linear model y = x>β + ξ, where β =
(3, 1.5, 0, 0, 2, 0, 0, 0)>, ξ ∼ N (0, σ2), and x follows a multivariate Gaussian distribution whose (i, j)-th correlation
is 0.5|i−j|. Among the p = 8 features, only three of them are significant. The training size is n = 60, and the test
size is 200. The other settings are the same as Subsubsection IV-A1. The results are presented in Tables III and IV.

The results show that the linear model-based methods ‘LASSO’ and ‘OMP’ have the best overall performance,
which is expected since the underlying data are from a linear model. The proposed ‘NN’ approach is almost as
good as the linear methods. On the other hand, the tree-based methods ‘RF’ and ‘GB’ perform significantly worse.
We think that this is because the sample size n = 60 is relatively small, so the tree-based methods have a large
variance. Meanwhile, the ‘NN’ uses the L1 penalty to alleviate the over-parameterization and consequently spots the
relevant variables. Additionally, ‘NN’ exhibits a positive association between the selection accuracy and prediction
performance, while the tree-based methods do not.

3) Friedman dataset: This experiment uses the Friedman dataset with the following nonlinear data-generating
process, y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ξ. We generate standard Gaussian predictors x with
a dimension of p = 50. The training size is n = 500 and the test size is 2000. Other settings are the same as
before. The results are summarized in Tables V and VI. For this nonlinear dataset, ‘NN’ almost always finds the
significant variables and excludes redundant ones, which is better than tree-based methods. At the same time, the
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TABLE I
PERFORMANCE COMPARISON ON THE NN-GENERATED DATA, IN TERMS

OF THE NUMBER OF CORRECTLY (‘TP’) AND WRONGLY (‘FP’)
SELECTED FEATURES FOR DIFFERENT σ. THE STANDARD ERRORS ARE

WITHIN 0.3, EXCEPT FOR THE ‘FP’ OF ‘LASSO’, WHICH IS 0.6.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

NN TP 10.0 9.7 9.8 6.7
FP 0.0 0.1 1.8 1.3

LASSO TP 9.5 8.8 8.6 6.5
FP 12.4 10.8 10.5 9.3

OMP TP 8.4 8.0 8.6 5.8
FP 0.1 0.4 0.0 0.4

RF TP 6.3 6.8 7.4 4.2
FP 0.1 0.2 0.7 0.8

GB TP 7.9 7.8 8.4 5.6
FP 1.2 1.5 3.1 3.5

TABLE II
PERFORMANCE COMPARISON ON THE NN-GENERATED

DATA, IN TERMS OF THE AVERAGE MEAN SQUARED
ERROR FOR DIFFERENT σ. THE STANDARD ERRORS OF
‘NN’ ARE WITHIN 0.1, WHILE LINEAR METHODS ARE

AROUND 0.4 AND TREE-BASED METHODS ARE 0.8.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

NN 0.55 0.72 1.18 4.75
LASSO 5.05 5.71 5.07 5.50
OMP 5.27 4.75 5.01 6.17
RF 10.01 8.86 9.22 9.70
GB 5.67 5.84 6.58 10.92

TABLE III
PERFORMANCE COMPARISON ON THE LINEAR DATA, IN TERMS OF THE

NUMBER OF CORRECTLY (‘TP’) AND WRONGLY (‘FP’) SELECTED
FEATURES FOR DIFFERENT σ. THE STANDARD ERRORS ARE WITHIN 0.1.

Method σ = 0 σ = 1 σ = 3 σ = 5

NN TP 3.0 2.7 2.2 1.6
FP 0.0 0.0 0.1 0.3

LASSO TP 2.7 3.0 2.5 2.1
FP 0.0 0.0 0.1 0.3

OMP TP 3.0 2.8 2.5 1.7
FP 0.0 0.0 0.3 0.9

RF TP 1.5 1.5 1.7 1.4
FP 0.0 0.0 0.0 0.3

GB TP 1.3 1.5 1.3 1.0
FP 0.0 0.0 0.0 0.1

TABLE IV
PERFORMANCE COMPARISON ON THE LINEAR DATA, IN
TERMS OF THE NUMBER OF AVERAGE MEAN SQUARED

ERROR FOR DIFFERENT σ. THE STANDARD ERRORS ARE
WITHIN 0.2 WHEN σ < 5, AND ABOUT 0.4 WHEN σ = 5.

Method σ = 0 σ = 1 σ = 3 σ = 5

NN 0.11 0.43 2.11 5.42
LASSO 0.00 0.13 1.32 4.97
OMP 0.00 0.09 1.47 6.61
RF 3.54 3.52 4.98 10.00
GB 2.68 3.04 5.76 14.20

linear methods fail to select the quadratic factor x3. Moreover, we find that when different methods are compared,
the method with a better selection accuracy does not necessarily exhibit a better prediction and vice versa.

B. BGSBoy dataset

The BGSBoy dataset involves 66 boys from the Berkeley guidance study (BGS) of children born in 1928-29 in
Berkeley, CA [27]. The dataset includes the height (‘HT’), weight (‘WT’), leg circumference (‘LG’), strength (‘ST’)
at different ages (2, 9, 18 years), and body mass index (‘BMI18’). We choose ‘BMI18’ as the response, which is
defined as follows.

BMI18 = WT18/(HT18/100)2, (11)

where WT18 and HT18 denote the weight and height at the age of 18, respectively. In other words, ‘WT18’ and
‘HT18’ are sufficient for modeling the response among p = 10 variables. Other variables are correlated but redundant.
The training size is n = 44 and the test size is 22. Other settings are the same as before. We compare the prediction
performance and explore the three features which are most frequently selected by each method. The results are
summarized in Table VII.

From the results, all of the methods can identify ‘WT18’ most of the time. Nevertheless, ‘NN’ only selects
‘WT18’ and ‘HT18’ in all the replications, while other methods sometimes select features that are redundant but
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TABLE V
PERFORMANCE COMPARISON ON THE FRIEDMAN DATA, IN TERMS OF

THE NUMBER OF CORRECTLY (‘TP’) AND WRONGLY (‘FP’) SELECTED
FEATURES FOR DIFFERENT σ. THE STANDARD ERRORS ARE WITHIN 0.15,

EXCEPT FOR ‘FP’ OF ‘LASSO’, WHICH IS AROUND 0.3.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

NN TP 4.8 5.0 5.0 4.9
FP 0.0 0.0 0.0 0.1

LASSO TP 4.04 4.06 4.1 4.13
FP 2.03 2.24 2.22 4.72

OMP TP 4.0 4.0 4.0 4.0
FP 0.17 0.13 0.09 0.17

RF TP 4.64 4.54 4.72 3.87
FP 0.03 0.02 0.02 0.22

GB TP 4.98 4.94 4.94 4.5
FP 0.03 0.0 0.02 0.56

TABLE VI
PERFORMANCE COMPARISON ON THE FRIEDMAN DATA,

IN TERMS OF THE AVERAGE MEAN SQUARED ERROR FOR
DIFFERENT σ. THE STANDARD ERRORS ARE WITHIN 0.1.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

NN 1.89 2.08 2.32 5.69
LASSO 6.28 6.08 6.2 6.94
OMP 5.8 5.98 5.45 6.31
RF 5.22 5.43 5.36 7.82
GB 1.75 1.87 2.18 7.57

TABLE VII
EXPERIMENT RESULTS OF DIFFERENT METHODS ON THE BGSBOY DATASET. RMSE: THE MEAN OF THE ROOT MEAN SQUARED

ERROR(STANDARD ERROR). TOP 3 FEATURES: THE FEATURE NAME(NUMBER OF SELECTION, OUT OF 100 TIMES).

Method NN LASSO OMP RF GB

RMSE 0.04 (0.003) 0.05 (0.002) 0.05 (0.002) 3.07 (0.154) 2.4 (0.142)

Top 3 frequently
selected features

WT18(100) WT18(100) WT18(100) WT18(91) WT18(90)
HT18(81) HT18(71) HT18(64) LG18(86) LG18(59)

N/A HT9(51) HT9(16) LG9(2) HT18(8)

correlated with the response. For example, tree-based methods usually miss ‘HT18’ but select ‘LG18’ instead. The
results indicate that only ‘NN’ can stably identify the significant underlying variables. Interestingly, we find that the
linear methods still predict well in this experiment. The reason is that Equation (11) can be well-approximated by
a first-order Taylor expansion on ‘HT18’ at the value of around 180, and the range of ‘HT18’ is within a small
interval around 180.

C. UJIIndoorLoc dataset

The UJIINdoorLoc dataset aims to solve the indoor localization problem via WiFi fingerprinting and other
variables such as the building and floor numbers. A detailed description can be found in [28]. Specifically, we
have 520 Wireless Access Points (WAPs) signals (which are continuous variables) and ‘FLOOR’, ‘BUILDING’,
‘SPACEID’, ‘RELATIVEPOSITION’, ‘USERID’, and ‘PHONEID’ as categorical variables. The response variable is
a user’s longitude (‘Longitude’). The dataset has 19937 observations. We randomly sample 3000 observations and
split them into n = 2000 for training and 1000 for test. As part of the pre-processing, we create binary dummy
variables for the categorical variables, which results in p = 681 variables in total. We explore the ten features that
are most frequently selected by each method. We set the cutoff value as the tenth-largest variable importance. The
procedure is independently replicated 100 times. The results are reported in Table VIII.

Based on the results, the ‘NN’ achieves similar prediction performance as ‘RF’ and significantly outperforms other
methods. As for variable selection, since ‘BUILDING’ greatly influences the location from our domain knowledge,
it is non-surprisingly selected by all methods in every replication. However, except for ‘BUILDING’, different
methods select different variables. Some overlaps, e.g., ‘PHONEID_14’ selected by ‘NN’ and ‘GB’, ‘USERID_16’
selected by ‘NN’ and ‘LASSO’, indicate the potentially important variables. Nevertheless, those methods do not
achieve an agreement for variable selection. ‘NN’ implies that all the WAPs signals are weak while categorical
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TABLE VIII
EXPERIMENT RESULTS OF DIFFERENT METHODS ON THE UJIINDOOR DATASET. RMSE: THE MEAN OF THE ROOT MEAN SQUARED

ERROR(STANDARD ERROR). TOP 10 FEATURES: THE FEATURE NAME(NUMBER OF SELECTION, OUT OF 100 TIMES).

Method NN LASSO OMP RF GB

RMSE 9.6(0.067) 14.23(0.046) 16.58(0.052) 9.49(0.053) 10.3(0.043)

Top 10
frequently
selected
features

BUILDINGID_2(100) BUILDINGID_1(100) BUILDINGID_1(100) BUILDINGID_1(100) BUILDINGID_2(100)
BUILDINGID_1(100) USERID_16(100) BUILDINGID_2(100) BUILDINGID_2(100) BUILDINGID_1(100)

USERID_16(97) BUILDINGID_2(100) WAP099(81) WAP120(82) WAP141(91)
SPACEID_202(86) USERID_9(94) USERID_10(70) WAP141(76) WAP120(87)

USERID_8(76) WAP099(90) USERID_16(60) WAP117(75) WAP099(68)
USERID_9(74) USERID_10(72) USERID_7(58) WAP173(74) WAP113(67)

PHONEID_14(65) USERID_7(67) WAP124(55) WAP118(58) WAP117(60)
FLOOR_3(61) WAP121(49) USERID_9(46) WAP167(57) PHONEID_14(58)

SPACEID_201(52) WAP118(34) WAP120(31) WAP035(52) WAP114(48)
SPACEID_203(41) WAP124(28) WAP117(29) WAP113(33) WAP167(47)

variables provide more information about the user location. Given the extremely high missing rate of WAPs signals
(97% on average, as reported in [28]), we think that the interpretation of ‘NN’ is reasonable.

D. Summary

The experiment results show the following points. First, ‘NN’ can stably identify the important variables and
have competitive prediction performance compared with the baselines. Second, the increase of the noise level
will hinder both the selection and prediction performance. Third, the LASSO regularization is crucial for ‘NN’ to
avoid over-fitting, especially for small data. Fourth, the selection and prediction performances are often positively
associated for ‘NN’, but may not be the case for baseline methods.

V. CONCLUDING REMARKS

We established a theory for the use of LASSO in two-layer ReLU neural networks. In particular, we showed that
the LASSO estimator could stably reconstruct the neural network coefficients and identify the critical underlying
variables under reasonable conditions. We also proposed a practical method to solve the optimization and perform
variable selection. We briefly remark on some interesting further work. First, the algorithm can be directly extended
to deeper neural networks. It will be exciting to generalize the main theorem to the multi-layer cases. Second, the
developed theory may be extended to study the variable selection for general nonlinear functions using the universal
approximation theory.

The Appendix includes detailed proofs. The supplementary material includes Python codes used for the experiments.

APPENDIX A
ELABORATION ON THE MAIN RESULT

We first restate the main assumptions and results in the following for ease of presentation. Given n i.i.d. observations
{xi, yi}1≤i≤n satisfying

yi =

r∑
j=1

a?j relu(w?>
j xi + b?j ) + ξi, with xi ∼ N (0, I) (12)

where ξi denotes the random noise and/or approximation error obeying n−1
∑n

i=1 ξ
2
i ≤ σ2. Let

(
Ŵ , â, b̂

)
be the

solution to the following optimization problem

min
W ,a,b

‖W ‖1 subject to
1

n

n∑
i=1

(
yi −

r∑
j=1

ajrelu(w>j xi + bj)

)2

≤ σ2, (13)

where aj ∈ {1,−1}, ‖W ‖1 :=
∑

j,k |wjk|.
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Let ψ be the largest value such that

E
[
〈a, relu(W>x+ b)〉 − 〈a?, relu(W ?>x+ b?)〉

]2
≥ ψD2 [(W ,a, b), (W ?,a?, b?)]2 . (14)

With similar analysis as in [29, Lemma 3.2], one can see that ψ > 0. In addition, we make the following assumptions1.

Assumption 2. Suppose that for some constant B > 0,

‖w?
j‖2 ≤ B and |b?j | ≤ B for all 1 ≤ j ≤ r. (15)

Since ψ may depend on model dimensions saliently, we demonstrate that the above assumption can be replaced
with the following condition under Gaussian input.

Assumption 3. Suppose that for some constant B > 0,

1 ≤ ‖w?
j‖2 ≤ B and |b?j | ≤ B for all 1 ≤ j ≤ r. (16)

Here, we consider the normalized setting ‖w?
j‖2 ≥ 1 for simplicity. In addition, we assume that2

max
j 6=k

∣∣∣〈w?
j ,w

?
k〉
∣∣∣

‖w?
j‖2‖w?

k‖2
≤ 1

r0.1
. (17)

Then if W ? has at most s nonzero entries, one can stably reconstruct the neural network stated in the following
result when the sample size scales logarithmically with the input dimension. The following theorem is a more
elaborated version of Theorem 1 in the main paper.

Theorem 2. There exist some universal constants c1, c2, c3 > 0, such that for any δ > 0, one has with probability
at least 1− δ,

â = Πa? and ‖Ŵ −W ?Π>‖F + ‖b̂−Πb?‖2 ≤ c1σ (18)

for some permutation Π ∈ {0, 1}r×r, provided that under Assumption 2,

n >
c2
ψ
s3r3 log4

p

δ
, (19)

or under Assumption 3,

n > c2s
3r13 log4

p

δ
and σ <

c3
r
. (20)

APPENDIX B
ANALYSIS: PROOF OF THEOREM 2

Let S be the index set with cardinality S consisting of the support for W ? and top entries of Ŵ . Define

W := ŴS ∈ Rp×r,

and aj = âj , bj = b̂j . Define

d1(w1, a1, b1,w2, a2, b2) =

{
‖w1 −w2‖1 + |b1 − b2| if a1 = a2;
‖w1‖1 + ‖w2‖1 + |b1|+ |b2| if a1 6= a2,

(21)

and

d2(w1, a1, b1,w2, a2, b2) =

{ √
‖w1 −w2‖22 + |b1 − b2|2 if a1 = a2;

1 if a1 6= a2.
(22)

1From the technical proofs, it can be seen that the Gaussian input assumption can be replaced with sub-Gaussian input. We consider the
Gaussian for simplicity.

2Actually, we only need maxj 6=k
|〈w?j ,w?k〉|

‖w?j ‖2‖w
?
k
‖2
≤ 1

rω
for some constant ω > 0. Here, we choose ω = 0.1 for ease of understanding.
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In addition, for permutation π on [r], let

D1 := min
π

r∑
j=1

d1(wπ(j), aπ(j), bπ(j),w
?
j , a

?
j , b

?
j ), (23)a

D2 := min
π

√√√√ r∑
j=1

d2(wπ(j), aπ(j), bπ(j),w
?
j , a

?
j , b

?
j )

2 (23)b

denote the D1-distance and D2-distance between (W ,a, b) and (W ?,a?, b?), respectively. Then one has the
following bounds.

Lemma 1. For any W ∈ Rp×r with ‖W ‖0 ≤ S, there exists some universal constants c4, c5 > 0 such that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ c4ψD2
2 (24)

holds with probability at least 1− δ provided that

n ≥ c5ψ2S3 log4
p

δ
. (25)

In addition, one has

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ c4 min

{
1

r
,D2

2

}
(26)

holds with probability at least 1− δ provided that

n ≥ c5S3r4 log4
p

δ
. (27)

Lemma 2. Then there exists some universal constants c6 > 0 such that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2 (28)

holds with probability at least 1− δ.

By comparing the bounds given in Lemma 1 and 2, one has

c4ψD
2
2 ≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

provided that
n > c5ψ

2S3 log4
p

δ
.

Let Ŝ? be the index set with cardinality 2s consisting of the support for W ? and top entries of Ŵ . In addition,
let D?

1 and D?
2 denote the D1-distance and D2-distance between

(
ŴŜ? , â, b̂

)
and (W ?,a?, b?) in a similar way

as (23). Notice the fact that

D?
2 ≤ D2 and D1 ≤ 2D?

1. (29)

Combined with Lemma 3, the above results give

D?
2 ≤

2c6
c4ψ

σ,

provided that for some constant c7 > 0

n ≥ c5ψ2S3 log4
p

δ
with S ≥ c7sr

ψ
,
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such that

c6

(
r

S
+
r log3 p

nδ

n

)
D?2

1 ≤
c4ψ

8
D?2

2 .

Similarly, one has

c4 min

{
1

r
,D2

2

}
≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

provided that
n > c5S

3r4 log4
p

δ
.

Combined with Lemma 3, the above results give

D?
2 ≤

2c6
c4
σ,

provided that for some constant c7 > 0

n ≥ c5S3r4 log4
p

δ
and σ2 ≤ c4

2c6r
with S ≥ c7sr3,

such that

c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2 <

c4
r

and c6

(
r

S
+
r log3 p

nδ

n

)
D?2

1 ≤
c4
8
D?2

2 .

Then we conclude the proof since after appropriate permutation

‖Ŵ −W ?‖F ≤ 2‖ŴŜ? −W
?‖F.

APPENDIX C
PROOF OF LEMMA 1 (LOWER BOUND)

This can be seen from the following three properties.
• Consider the case that D1 ≤ ε = δ

4nr

√
π

log 4pn

δ

. With probability at least 1− δ,

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

=
D2

1

ε2
1

n

n∑
i=1

 r∑
j=1

ajrelu(w̃>j xi + b̃j)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

, (30)

where w̃j = w?
j + ε

D1

(
wj −w?

j

)
and b̃j = b?j + ε

D1

(
bj − b?j

)
.

• For any ε > 0 and
D1 ≥

ε√
S
n log pr

S log BS
εδ

,

there exists some universal constant C1 > 0, such that with probability at least 1− δ,

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

− C1D
2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

εδ
. (31)
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• For some universal constant C2 > 0

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥ C2 min

{
1

r
,D2

2

}
. (32)

a) Putting all together.: Let

ε = C3
δ

nr

√
S

n
log

BnS

δ
,

for some universal constant C3 > 0 such that

ε√
S
n log pr

S log BS
εδ

<
δ

4nr

√
π

log 4pn
δ

.

Inserting (14) into (31) gives

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ ψD2
2 − C1D

2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

εδ
≥ ψ

2
D2

2, (33)

holds with probability at least 1− δ provided that for some constant C4 > 0

n ≥ C4ψ
2S3 log

pr

S
log

BS

εδ
log2

pn

δ
and D1 ≥

δ

4nr

√
π

log 4pn
δ

.

Here, the last line holds due to Lemma 3 and we assume that max {‖W ‖∞, ‖b‖∞} is bounded by some constant.
On the other hand, if D1 <

δ
4nr

√
π

log 4pn

δ

, (30) and (33) tell us that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ D2
1

ε2
ψ

2
D̃2

2 =
ψ

2
D2

2, (34)

where D̃2 denotes the D2-distance between
(
W̃ , ã, b̃

)
and (W ?,a?, b?) in a similar way as (23).

Inserting (32) into (31) gives

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ C2 min

{
1

r
,D2

2

}
− C1D

2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

εδ

≥ C2

2
min

{
1

r
,D2

2

}
, (35)

holds with probability at least 1− δ provided that for some constant C4 > 0

n ≥ C4S
3r4 log

pr

S
log

BS

εδ
log2

pn

δ
and D1 ≥

δ

4nr

√
π

log 4pn
δ

.

Here, the last line holds due to Lemma 3 and we assume that max {‖W ‖∞, ‖b‖∞} is bounded by some constant.
On the other hand, if D1 <

δ
4nr

√
π

log 4pn

δ

, (30) and (35) tell us that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ D2
1

ε2
C2

2
min

{
1

r
, D̃2

2

}
=
C2

2
D2

2. (36)

Summing up, we conclude the proof by verifying the claims in the following.
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A. Proof of (30)

Without loss of generality, we assume that aj = a?j for 1 ≤ j ≤ r, and

D1 =

r∑
j=1

(
‖wj −w?

j‖1 + |bj − b?j |
)
≤ ε.

By taking union bound, with probability at least 1− δ
2 , one has for all 1 ≤ i ≤ n and 1 ≤ j ≤ r,∣∣∣w?>

j xi + b?j

∣∣∣ > δ

2nr

√
π

2
,

since ‖w?
j‖2 ≥ 1 and xi ∼ N (0, I). In addition, for all 1 ≤ i ≤ n and 1 ≤ j ≤ r,∣∣∣w>j xi + bj −w?>

j xi − b?j
∣∣∣ ≤ ‖wj −w?

j‖1‖xi‖∞ + |bj − b?j | ≤ ε
√

2 log
4pn

δ

holds with probability at least 1− δ
2 . Here, the last inequality comes from the fact that with probability at least

1− δ
2 ,

‖xi‖∞ ≤
√

2 log
4pn

δ
for all 1 ≤ i ≤ n. (37)

Putting together, we have with probability at least 1− δ,

u(w>j xi + bj) = u(w?>
j xi + b?j ), (38)

with the proviso that ε ≤ δ
4nr

√
π

log 4pn

δ

. Note that u(x) = 1 if x > 0, and u(x) = 0 if x ≤ 0. Then combining with

the definition of w̃j and b̃j , the above property yields

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

=
1

n

n∑
i=1

 r∑
j=1

a?ju(w?>
j xi + b?j )(w

>
j xi + bj −w?>

j xi − b?j )

2

=
D2

1

ε2
1

n

n∑
i=1

 r∑
j=1

a?ju(w?>
j xi + b?j )(w̃

>
j xi + b̃j −w?>

j xi − b?j )

2

=
D2

1

ε2
1

n

n∑
i=1

 r∑
j=1

ajrelu(w̃>j xi + b̃j)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

,

and the claim is proved.

B. Proof of (31)

Notice that ∣∣∣ajrelu(w>j x+ bj)− a?j relu(w?>
j xi + b?j )

∣∣∣
≤

{
‖wj −w?

j‖1‖x‖∞ + |bj − b?j | if aj = a?j ,(
‖wj‖1 + ‖w?

j‖1
)
‖x‖∞ + |bj |+ |b?j | if aj 6= a?j ,

which leads to ∣∣∣∣∣∣
r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

∣∣∣∣∣∣ ≤ D1 max {‖x‖∞, 1} . (39)
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For any fixed (W ,a, b), let

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

and define the following event set

E :=

{
‖xi‖∞ ≤

√
2 log

4pn

δ
for all 1 ≤ i ≤ n

}
.

Then with probability at least 1− δ,

1

n

n∑
i=1

(
z2i − E

[
z2i
])

=
1

n

n∑
i=1

{
z2i 1(E)− E

[
z2i 1(E)

]
− E

[
z2i 1(E)

]}
≥ −4D2

1 log
4pn

δ

√
1

n
log

2

δ
−D2

1

δ

n

≥ −5D2
1 log

4pn

δ

√
1

n
log

2

δ
. (40)

Here, the first line holds due to (37); the last line comes from Hoeffding’s inequality, and the fact that∣∣E [z2i 1(E)
]∣∣ ≤ D2

1

∣∣∣∣∣E
[
‖xi‖2∞1(‖xi‖∞ >

√
2 log

4pn

δ
)

]∣∣∣∣∣
≤ D2

1

∫ ∞
√

2 log 4pn

δ

x2dP(‖xi‖∞ < x)

≤ D2
1

∫ ∞
√

2 log 4pn

δ

4xp exp(−x
2

2
)dx ≤ D2

1

δ

n
.

In addition, consider the following ε-net

Nε :=

{
(W ,a, b) : |Wij | ∈

ε

r + S

[⌈B(r + S)

ε

⌉]
, ‖W ‖0 ≤ S,

|bj | ∈
ε

r + S

[⌈B(r + S)

ε

⌉]
, |aj | = 1

}
,

where [n] := {1, 2, . . . , n− 1}. Then for all (W ,a, b) with ‖W ‖1 ≤ B and ‖b‖1 ≤ B, there exists some point,
denoted by

(
W̃ , ã, b̃

)
, in Nε whose D1-distance from (W ,a, b) is less than ε. For simplicity, define

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

z̃i :=

r∑
j=1

ãjrelu(w̃>j xi + b̃j)−
r∑
j=1

a?j relu(w?>
j xi + b?j ).

Similar to (39), we can derive that∣∣∣∣∣∣
r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

ãjrelu(w̃>j x+ b̃j)

∣∣∣∣∣∣ ≤ εmax {‖x‖∞, 1} ,

which implies ∣∣z2i − z̃2i ∣∣ ≤ ε (ε+D1) max
{
‖xi‖2∞, 1

}
,

and then with probability at least 1− δ,

1

n

n∑
i=1

(
z2i − E

[
z2i
])
− 1

n

n∑
i=1

(
z̃2i − E

[
z̃2i
])
≥ −4ε (ε+D1) log

4pn

δ
. (41)
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In addition, a little algebra gives

log |Nε| ≤ C5S log
pr

S
log

BS

ε
, (42)

for some universal constant C5 > 0. Combining (40), (41), and (42) leads to

1

n

n∑
i=1

(
z2i − E

[
z2i
])
≥ −5 (ε+D1)

2 log
4pn

δ

√
1

n
log

2 |Nε|
δ
− 4ε (ε+D1) log

4pn

δ
.

Then, (31) is obvious.

C. Proof of (32)

We first consider a simple case that bj = 0 and b?j = 0 for 1 ≤ j ≤ r, and show that for some small constant
C6 > 0,

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ C6 min

{
1

r
,D2

2

}
. (43)

In the following, we will focus on the case

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≤ C6

r
.

According to Lemma 4, one has for any constant k ≥ 0, there exists some constant αk > 0 such that

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ αk

∥∥∥∥∥∥
r∑
j=1

aj‖wj‖2
( wj

‖wj‖2
)⊗2k − r∑

j=1

a?j‖w?
j‖2
( w?

j

‖w?
j‖2
)⊗2k∥∥∥∥∥∥

2

F

. (44)

Assumption 1 tells us that for any integer k ≥ 2
ω ,∣∣〈v?j1 ,v?j2〉∣∣ ≤ 1

r2
. (45)

where
vj := vec

(( wj

‖wj‖2
)⊗k) with βj := aj‖wj‖2,

and

v?j := vec

(( w?
j

‖w?
j‖2
)⊗k) with β?j := a?j‖w?

j‖2.

Then (44) gives

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ α3k

∥∥∥∥∥∥
r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

.

Define

S+ := span {vj}j:βj>0 S− := span {vj}j:βj<0 ,

and

S?+ := span
{
v?j
}
j:β?j>0

S?− := span
{
v?j
}
j:β?j<0

.
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Let PS and P⊥S denote the projection onto and perpendicular to the subspace S, respectively. By noticing that
P⊥S−

vj = 0 for j obeying βj < 0, and P⊥S?+v
?
j = 0 for j obeying β?j > 0, one has∥∥∥∥∥∥

r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

≥

∥∥∥∥∥∥
∑
j:βj>0

βj
(
P⊥S−

vj
)⊗2 ⊗ (P⊥S?+vj)⊗4 − ∑

j:β?j<0

β?j
(
P⊥S−

v?j
)⊗2 ⊗ (P⊥S?+v?j )⊗4

∥∥∥∥∥∥
2

F

≥
∑
j:β?j<0

∥∥∥β?j (P⊥S−
v?j
)⊗2 ⊗ (P⊥S?+v?j )⊗4∥∥∥2F ≥ 1

2

∑
j:β?j<0

∥∥∥P⊥S−
v?j

∥∥∥4
2
,

where the penultimate inequality holds since the inner product between every pair of terms is positive, and the last
inequality comes from the facts that |β?j | ≥ 1 and (45).

Moreover, by means of AM-GM inequality and (45), one can see that∑
j:β?j<0

∥∥∥P⊥S−
v?j

∥∥∥4
2
≥ 1

r

( ∑
j:β?j<0

∥∥∥P⊥S−
v?j

∥∥∥2
2

)2
=

1

r

∥∥∥P⊥S−

[
v?j
]
j:β?j<0

∥∥∥4
F
≥ 1

2r

∥∥∥P⊥S−
PS?−

∥∥∥4
F
.

Then combining with (43), the above result and the counterpart for β?j > 0 lead to

dim(S−) ≥ dim(S?−) and dim(S+) ≥ dim(S?+),

which gives

dim(S−) = dim(S?−) and dim(S+) = dim(S?+).

Furthermore, for some small constant C6 > 0, we have

dist(S−,S?−) ≤ C6 and dist(S+,S?+) ≤ C6.

Let P⊥i denote the projection perpendicular to

span
{
v?j
}
j 6=i:β?j>0

,

and

γj :=
βj〈P⊥S−

vj , P
⊥
S−
v?i 〉2〈P⊥i vi, P⊥S−

v?i 〉2∥∥P⊥S−
v?i
∥∥2
2

∥∥P⊥i v?i ∥∥2 .

Then for any i,∥∥∥∥∥∥
r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

≥

∥∥∥∥∥∥
∑
j:βj>0

βj
(
P⊥S−

vj
)⊗2 ⊗ v⊗4j − r∑

j=1

β?j
(
P⊥S−

v?j
)⊗2 ⊗ v?⊗4j

∥∥∥∥∥∥
2

F

≥ 1

2

∥∥∥∥∥∥
∑
j:βj>0

βj
(
P⊥S−

vj
)⊗2 ⊗ v⊗4j − ∑

j:β?j>0

β?j
(
P⊥S−

v?j
)⊗2 ⊗ v?⊗4j

∥∥∥∥∥∥
2

F

≥ 1

2

∥∥∥∥∥∥
∑
j:βj>0

βj
(
P⊥S−

vj
)⊗2 ⊗ (P⊥i vi)⊗2 ⊗ v⊗2j − β?i (P⊥S−

v?i
)⊗2 ⊗ (P⊥i v?i )⊗2 ⊗ v?⊗2i

∥∥∥∥∥∥
2

F

≥ 1

2

∥∥∥∥∥∥
∑
j:βj>0

γjv
⊗2
j − β

?
i

∥∥P⊥S−
v?i
∥∥2
2

∥∥P⊥i v?i ∥∥2v?⊗2i

∥∥∥∥∥∥
2

F

,
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which, together with (43), implies that there exists some j such that

‖
√
βjvj −

√
β?i v

?
i ‖22 ≤

1

r
.

Without loss of generality, assume that

‖
√
βjvj −

√
β?j v

?
j ‖22 ≤

1

r
, for all 1 ≤ j ≤ r. (46)

Then

E
[ r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

]2 ≥ αk
∥∥∥∥∥∥

r∑
j=1

βjvjv
>
j −

r∑
j=1

β?j v
?
jv

?>
j

∥∥∥∥∥∥
2

F

≥ αk
r∑
j=1

∥∥∥βjvjv>j − β?j v?jv?>j ∥∥∥2
F
− αk

2r

 r∑
j=1

∥∥∥βjvjv>j − β?j v?jv?>j ∥∥∥
F

2

≥ αk
2

r∑
j=1

∥∥∥βjvjv>j − β?j v?jv?>j ∥∥∥2
F
.

Here, the first line comes from (44); the second line holds through the following claim∣∣∣〈βj1vj1v>j1 − β?j1v?j1v?>j1 , βj2vj2v>j2 − β?j2v?j2v?>j2 〉∣∣∣
≤ 1

2r
‖βj1vj1v>j1 − β

?
j1v

?
j1v

?>
j1 ‖2‖βj2vj2v

>
j2 − β

?
j2v

?
j2v

?>
j2 ‖2

since for δj :=
√
βjvj −

√
β?j v

?
j ,

βjvjv
>
j − β?j v?jv?>j = δjδ

>
j +

√
β?j δjv

?>
j +

√
β?j v

?
j δ

?>
j .

Then the conclusion is obvious by noticing that∥∥∥βjvjv>j − β?j v?jv?>j ∥∥∥
F
≥ ‖wj −w?

j‖2.

Finally, we analyze the general case with bj , b?j 6= 0, which is similar to the above argument. For simplicity, we
only explain the different parts here. According to Lemma 4, one has for any constant k ≥ 0, there exists some
constant αk > 0 and some function fk : R→ R such that

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥
∞∑

k≥ 12

ω

∥∥∥∥∥∥
r∑
j=1

ajfk(
bj
‖wj‖2

)‖wj‖2
( wj

‖wj‖2
)⊗k − r∑

j=1

a?jfk(
b?j
‖w?

j‖2
)‖w?

j‖2
( w?

j

‖w?
j‖2
)⊗k∥∥∥∥∥∥

2

F

&
r∑
j=1

∞∑
k≥ 12

ω

∥∥∥∥∥ajfk( bj
‖wj‖2

)wj − a?jfk(
b?j
‖w?

j‖2
)w?

j

∥∥∥∥∥
2

F

&
r∑
j=1

inf
Rl(x)

E
[
ajrelu(w>j x+ bj)− a?j relu(w?>

j x+ b?j )−Rl(x)
]2

&
r∑
j=1

(
‖wj −w?

j‖22 + |bj − b?j |2
)
.

Here, l =
[
12
ω

]
, and the second inequality holds in a similar way to above analysis. Then the general conclusion is

handy.
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APPENDIX D
PROOF OF LEMMA 2 (UPPER BOUND)

For simplicity, let

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

ẑi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

âjrelu(ŵ>j xi + b̂j).

Recall the optimality of
(
Ŵ , â, b̂

)
with respect to the problem in (4). According to the triangle inequality, one has√√√√ 1

n

n∑
i=1

z2i ≤

√√√√ 1

n

n∑
i=1

ẑ2i + 2σ. (47)

We can bound the first term in the right hand side by

1

n

n∑
i=1

ẑ2i =
1

n

n∑
i=1

 r∑
j=1

aj

(
relu(w>j xi + bj)− relu(ŵ>j xi + b̂j)

)2

≤ 1

n

n∑
i=1

 r∑
j=1

∣∣∣(wj − ŵj)
>xi

∣∣∣
2

≤ r

n

n∑
i=1

r∑
j=1

∣∣∣(wj − ŵj)
>xi

∣∣∣2 ,
where the second line holds due to the contraction property of ReLu function, and the last line comes from the
AM-GM inequality. Lemma 5 further gives for some constant C7 > 0,

r∑
j=1

1

n

n∑
i=1

∣∣∣(wj − ŵj)
>xi

∣∣∣2 ≤ C7

r∑
j=1

‖wj − ŵj‖22 + C7
log3 p

nδ

n

r∑
j=1

‖wj − ŵj‖21

holds with probability at least 1− δ. In addition,
r∑
j=1

‖wj − ŵj‖21 ≤
∥∥∥W − Ŵ

∥∥∥2
1
≤
(
‖W ?‖1 − ‖Ŵ ‖1

)2
≤ D2

1,

and
r∑
j=1

‖wj − ŵj‖22 =
∥∥∥W − Ŵ

∥∥∥2
1
≤
∥∥∥W − Ŵ

∥∥∥
1

∥∥∥W − Ŵ
∥∥∥
∞

≤

(
‖W ?‖1 − ‖Ŵ ‖1

)(
‖W ?‖1 − ‖Ŵ ?‖1

)
S/2

≤ 4

S
D2

1.

Here, Ŵ ? denote the entries of Ŵ on the support set for W ?, and we make use of the fact that ‖Ŵ ‖1 ≤ ‖W ?‖1
and ∥∥∥W − Ŵ

∥∥∥
∞
≤ ‖Ŵ

? − Ŵ ‖1
S − s

≤ ‖W
?‖1 − ‖Ŵ ?‖1
S/2

.

Putting everything together gives the desired result.
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APPENDIX E
TECHNICAL LEMMAS

Lemma 3. For any (W ,a, b) with ‖W ‖0+‖b‖0+‖W ?‖0+‖b?‖0 ≤ S. Assume that ‖W ‖1+‖b‖1 ≤ ‖W ?‖1+‖b?‖1
and ‖w?

j‖22 + |b?j |2 ≤ 1. Then one has

D1 ≤ 2
√
SD2, (48)

where D1, D2 are defined in (23).

Proof. For simplicity, assume that

D2
2 =

∑
j∈J

(
‖wj −w?

j‖22 + |bj − b?j |2
)

+
∑
j /∈J

(
‖w?

j‖22 + |b?j |2
)
.

Here, j ∈ J means that aj = a?j and

‖wj −w?
j‖22 + |bj − b?j |2 ≤ ‖w?

j‖22 + |b?j |2.

Then according to the AM-GM inequality, one has
√
SD2 ≥

∑
j∈J

(
‖wj −w?

j‖1 + |bj − b?j |
)

+
∑
j /∈J

(
‖w?

j‖1 + |b?j |
)

≥
∑
j∈J

(
‖w?

j‖1 − ‖wj‖1 + |b?j | − |bj |
)

+ ‖W ?‖1 + ‖b?‖1 −
∑
j∈J

(
‖w?

j‖1 + |b?j |
)

≥
∑
j /∈J

(‖wj‖1 + |bj |) ,

which implies

2
√
SD2 ≥

∑
j∈J

(
‖wj −w?

j‖1 + |bj − b?j |
)

+
∑
j /∈J

(
‖w?

j‖1 + |b?j |+ ‖wj‖1 + |bj |
)
.

Thus we conclude the proof.

Lemma 4. For any constant k ≥ 0, there exists some universal function fk : R→ R such that

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

=

∞∑
k=0

∥∥∥∥ r∑
j=1

ajfk(
bj
‖wj‖2

)‖wj‖2
(

wj

‖wj‖2

)⊗k
−

r∑
j=1

a?jfk(
b?j
‖w?

j‖2
)‖w?

j‖2
( w?

j

‖w?
j‖2
)⊗k∥∥∥∥2

F

, (49)

with

αk := f2k(0) > 0, for all k > 0. (50)

In addition, we have

inf
Rl(x)

E

arelu(w>x+ b)−
r∑
j=1

a?relu(w?>x+ b?)−Rl(x)

2

=

∞∑
k>l

∥∥∥∥afk( b

‖w‖2
)‖w‖2

( w

‖w‖2
)⊗k − a?fk( b?

‖w?‖2
)‖w?‖2

( w?

‖w?‖2
)⊗k∥∥∥∥2

F

, (51)

where Rl(x) denote the polynomial with order less than l.
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Lemma 5. There exists some universal constant c > 0, such that for all w ∈ Rp,

1

n

n∑
i=1

∣∣∣w>xi∣∣∣2 ≤ c ‖w‖22 + c
log3 p

nδ

n
‖w‖21 , (52)

holds with probability at least 1− δ.

Proof. Before proceeding, we introduce some useful techniques about Restricted Isometry Property (RIP). Let
X := 1√

n
[x1,x2, . . . ,xn]. For some constant c0 > 0, if n ≥ c0

(
s log p

s + log 1
δ

)
, then with probability at least

1− δ, ∥∥∥X>w∥∥∥2
2
≤ 2‖w‖22 (53)

holds for all w satisfying ‖w‖0 ≤ s.
We divide the entries of w into several groups S1 ∪ S2 ∪ . . . ∪ SL with equal size s (except for SL), such that

the entries in Sj are no less than Sk for any j < k. Then, according (53), one has

1

n

n∑
i=1

(w>xi)
2 = w>XX>w =

∑
j,k

w>SjXX
>wSk

≤ 2
∑
j,k

‖wSj‖2‖wSk‖2 = 2
( L∑
l=1

‖wSl‖2
)2
.

In addition, the order of wSl yields for l > 1,

‖wSl‖2 ≤
√
s‖wSl‖∞ ≤

1

(l − 1)
√
s
‖w‖1,

which leads to ( L∑
l=1

‖wSl‖2
)2
≤ 2‖wS1‖22 + 2

( L∑
l=2

1

(l − 1)
√
s
‖w‖1

)2
≤ 2‖w‖22 +

2 log2 L

s
‖w‖21.

Then the result is obvious by taking above relations together.
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