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Parallel Assisted Learning
Xinran Wang , Jiawei Zhang , Mingyi Hong , Yuhong Yang , and

Jie Ding

Abstract—In the era of big data, a population’s multimodal
data are often collected and preserved by different business and
government entities. These entities often have their local machine
learning data, models, and tasks that they cannot share with others.
Meanwhile, an entity often needs to seek assistance from others to
enhance its learning quality without sharing proprietary informa-
tion. How can an entity be assisted while it is assisting others?
We develop a general method called parallel assisted learning
(PAL) that applies to the context where entities perform super-
vised learning and can collate their data according to a common
data identifier. Under the PAL mechanism, a learning entity that
receives assistance is obligated to assist others without the need
to reveal any entity’s local data, model, and learning objective.
Consequently, each entity can significantly improve its particular
task. The applicability of the proposed approach is demonstrated
by data experiments.

Index Terms—Assisted learning, cooperative learning, decen-
tralization, federated learning, machine learning.

I. INTRODUCTION

THERE has been a rapid growth of large-scale multimodal
data generated and privately held by decentralized entities.

Examples are business and government entities that collect the
same population’s demographic, activity, and healthcare infor-
mation. An entity often has its particular data, training model,
and learning objective treated as proprietary assets. We envision
that these entities may often want to coordinate with each other
in an appropriate and privacy-preserving manner to acquire a
diverse body of information.

Motivated by the above context, we develop operational meth-
ods for assisted learning. Any entity can seek personalized assis-
tance from others to enhance its learning quality without sharing
proprietary information. In our context, an entity can seek help
by broadcasting task-oriented but nonsensitive statistics and in-
corporating others’ feedback in one or more iterations to enhance
its prediction performance. Moreover, two entities may wish
to simultaneously improve their learning in an inter-connected
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manner. Instead of running two separate assistance, they can
bind their learning so that each entity has to assist the other
if it is being assisted. In many cooperative learning scenarios,
especially those involving competing entities, such a mechanism
will ensure that each entity contributes positively to others. Our
work is thus motivated by the following question. How to bind
each entity to assist others while it is being assisted?

We will develop a general method called Parallel Assisted
Learning (PAL) to realize such reciprocal learning in this work.
PAL will enable collaborations among heterogeneous entities
(with distinct and private objectives) to accomplish entity-
specific missions. Our work was inspired by Pareto Improve-
ment [1], a notion in economics that concerns the improvement
of individuals’ utilities without harming else. An essential char-
acteristic of PAL is that the assistance allows each entity to
have its unique input data, model, and objective (task labels),
which are not required to be shared. This renders its fundamental
difference from existing distributed learning frameworks such as
Federated Learning [2], [3], [4], [5], [6], which need to operate
on a globally shared model and objective.

Two examples are provided below to illustrate the application
scenarios. We will revisit them in the experiments.

Example 1: Two clinics in a city hold features collected from
the same set of patients. The data can be collated by a non-private
patient ID in hindsight. One clinic holds features from lab tests,
and the other holds pharmaceutical features. Due to limited
infrastructures or regulation constraints, they cannot migrate
data to each other. Also, each of them has a private learning task.
They will invoke the PAL protocol to improve their single-clinic
performance. Ideally, they will achieve near-oracle performance
as if data were centralized and the tasks could be transparent.

Example 2: Two organizations collect surveys from the same
cohort of mobile users. The user data can be collated by a
non-private username. One collects economic features such
as working hours and salary level, and the other focuses on
demographic information such as gender and age. They may
assist with each other’s learning tasks in a privacy-preserving
manner.

In general, PAL is expected to be useful in one or more of the
following scenarios. First, an entity does not want to provide
dedicated resources (such as machines or cloud-based inter-
faces) to assist others before it sees the performance gain from
being assisted. Second, an entity favors such an incentive that
collaborators will not cheat during both training and prediction
stages, which may cause terminated collaboration and hinder
everyone’s performance gain otherwise. Third, an entity without
an established reputation can still collaborate with known brands
in an economical way. We will provide experimental results to
support the envisioned use cases.
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A. Contributions

The main contributions of this work are threefold.
� First, we introduce a new notion of cooperative learning

called Parallel Assisted Learning. It is suitable for emerg-
ing machine learning services, where entities collecting
heterogeneous features from the same cohort of objects
can potentially assist each other’s learning tasks. PAL is
privacy-preserving in the sense that no entity will need to
share its local data, model, or learning task.

� Second, we develop implementable methods and practical
guides to materialize PAL. The methods are based on
the idea that entities interactively build local models by
transmitting a blend of task-specific statistics and then
provide assistance during the prediction stage.

� Third, we show that the proposed learning protocol can
be applied to various learning tasks, including regression,
classification, and classification-regression mixture. Under
some conditions, we prove that each entity can achieve
near-oracle prediction performance as if it had used all the
data to train the model. The oracle provides a theoretical
limit on what PAL can maximally bring to each entity.

Overall, PAL provides a win-win solution for entities that
own unique modeling and data resources. To the best of the
authors’ knowledge, this is the first solution for multiple entities
to perform learning tasks in parallel without sharing proprietary
local data, models, and task labels.

B. Related Work

Suppose multiple entities learn the same task separately based
on their local data and models. In predicting the data input of a
future object, an entity may directly query the prediction results
from other entities and then combine the results (often linearly).
Such a procedure, without joint modeling or coordination during
the training stage, is often studied in the literature on statistical
model averaging and expert learning [7], [8]. It aims to approach
the prediction performance of the best entity in hindsight. Nev-
ertheless, it does not fully utilize all the available data to train
a powerful model since entities have no information exchange
during the training.

Many distributed learning methods have been developed for
an entity to achieve near-oracle performance, as if all the local
resources were centralized. A popular direction of research is
Federated Learning (FL) [2], [3], [4], [5], [6], where the main
idea is to learn a joint model using the averaging of locally
learned model parameters so that the training data do not need to
be transmitted. The ultimate goal of FL is to exploit the resources
of massive edge devices (also known as ‘clients’) for achieving
a global objective orchestrated by a central server. Most existing
work focused on the so-called horizontally partitioned data,
meaning that clients hold local data of the same feature variables
but from different objects. Another type of data, which we
consider in this work, is known as vertically partitioned data,
meaning that entities hold data of different feature variables
collected from the same cohort of objects (illustrated in Fig. 1).
Under FL, this data format is studied in the context of the
so-called vertical FL [9], [10], [11].

Unlike FL, the purpose of PAL is to facilitate multiple entities
to assist each other’s private learning tasks autonomously. These

Fig. 1. Illustration of the data collation.

entities (e.g., research institutes, government agencies, and com-
panies) are often rich in computation resources. However, they
are restricted by the universe of variables and security constraints
that prohibit sharing proprietary input data, training models, or
objectives (task labels). Motivated by these practical considera-
tions, PAL differs from FL in the following aspects. First, PAL is
decentralized in that each entity can autonomously launch a local
task to solicit assistance and participate in cooperation without
a central coordinating server, while FL typically assumes the
existence of a central server. Second, different from FL, the
models and learning objectives of PAL entities can be different
and need not be shared. Vertical FL algorithms, such as those
proposed in [11], often build a large central model, where each
client will contribute to such a model building by utilizing local
data and local parameters. More specifically, vertical FL aims
to build a global model by aggregating the distributed feature
observed at each client and testing it on future data of complete
features. In contrast, in the proposed work, each participating
entity has its own learning objective, trains local models that
only operate on data of local features in the test/prediction
stage, and aims to make better local predictions through mutual
assistance.

In line with the above discussions, our work is more closely
related to a recent development in decentralized learning called
Assisted Learning (AL) [12]. The earlier work of AL aims to
improve a particular learning task of an entity regardless of other
entities’ tasks. We will revisit AL in Subsection II-C and show
that it can be cast as a particular case of PAL when only one
entity contributes task labels.

The rest of this paper is organized as follows. In Section II,
we introduce the background and formulation of PAL. We also
provide some sufficient conditions to guarantee the theoretical
performance and discuss its extension to classification learning.
In Section III, we demonstrate the proposed method with exper-
imental studies using both synthetic and real-world datasets. We
conclude the paper in Section IV.

II. GENERAL DESCRIPTION OF PAL

A. Notation

We will focus on supervised learning in this paper. We use
x ∈ X ⊆ Rp and y ∈ Y ⊆ R to denote the input data variable
and prediction label, respectively. We will often use a function
f : X → Y to represent a model. Let � : R×R→ R+ ∪ {0}
denote the loss function that maps a true label y and its predicted
label ŷ to �(y, ŷ). Let E and En denote the expectation and
empirical expectation (namely average over a sample), respec-
tively. So, Eng(y, x) = n−1

∑n
i=1 g(yi, xi) for any measurable
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function g, where yi and xi denote the ith observation of y
and x, respectively. With a slight abuse of notation, we may
sometimes use x and y to denote the n× p data matrix that
stacks n observations of the input variables and the n× 1 vector
of labels, respectively. Let ‖·‖2 denote the Euclidean norm.
A sequence of nonzero vectors z1, z2, . . . is said to converge
R-linearly to z if ‖zr − z‖2 ≤ γρr for all r, for some scalars
γ > 0 and ρ ∈ (0, 1).

The paper will study interactions between multiple entities,
each storing a model and dataset. As such, we will introduce the
notion of a module that represents the private resource held by
an entity: a moduleM = (A, x) is a pair of algorithm A and
input data x ∈ Xn×p such that for any task-specific label vector
y ∈ Yn, it will induce a prediction model denoted by fM←y .
For example, fM←y is obtained by solving an empirical risk
minimization problem fM←y = arg minf∈F

∑n
i=1 �(yi, f(xi)),

where F is a function class. In particular, if A represents the
least squares method, fM←y becomes x̃ 	→ x̃T(xTx)−1xTy for
any feature vector x̃ ∈ Rp.

In the context of privacy-preserving learning, M = (A, x)
is treated as private. To learn a task represented by y, the entity
can obtain fM←y as the operational model. However, this model
may not be adequate due to a lack of information in this entity’s
x regarding y. Thus, this entity may need assistance from a peer
module observing the same cohort of data objects. Then, we
introduce the following notion of data collation.

We say two datasets (matrices or column vectors) are collated
if their rows can be aligned by a unique data identifier. For
example, the identifier can be a timestamp, username, or unique
object index. The identifier is assumed to be non-private. In this
work, we assume that the data of all the modules can be collated
(see Fig. 1).

B. Problem Formulation

Suppose that there are m entities (or modules), indexed by
I = {1, . . . ,m}. Each entity i consists of data xi ∈ Rn×pi and
a learning algorithm based on the model fi,θ : Rpi → R with
θ ∈ Θi. Here, pi is the input dimension of entity i, while p in
Subsection II-A was used for a generic entity. The function form
fi,·, parameter space Θi, and dimension pi may differ among
different i’s. We first consider regression learning. Extensions
are included in Subsection II-F.

Suppose that each entity i will have a private learning task,
represented by the response vector yi ∈ Rn. Each entry in yi and
the associated row in xi correspond to a data object (e.g., a pa-
tient, a mobile user). Ideally, any entity, denoted by j ∈ I , aims

to build the regression modelE(yj | xi : i ∈ I)
Δ
= fj(xi : i ∈ I)

using all the variables held by other entities. Here, yj is a random
variable representing the task of entity j, and fj is the regression
function. We suppose that fj can be written in an additive
form fj(xi : i ∈ I) =

∑
i∈I fi,j(xi), where fi,j only operates

on the entity i’s data. We assume that fi,j is parameterized
by θi,j ∈ Θi, which represents the entity i’s model parameter
for the entity j’s learning task. For technical convenience, we
assume such a parameterization is well-specified in the sense
that the data-generating fi,j falls into the parametric form.

Assumption 1: We can express fj in the form of

fj(xi : i ∈ I) =
∑
i∈I

fi,θi,j (xi), with θi,j ∈ Θi. (1)

If the entity j could centralize the data {xi : i ∈ I} and know
the parametric forms, it would typically estimate the unknown
parameters by solving the following empirical risk minimization
problem.

For j : {θ̂i,j}i∈I = arg min
{θi,j}i∈I

En�

(
yj ,
∑
i∈I

fi,θi,j (xi)

)
. (2)

It is common to append a regularization term in (2), but we
omit it for brevity. In the prediction stage, consider an object
whose ith modality, denoted by xf

i , is observed by entity i (i ∈
I). Then, the entity j will use

∑
i∈I fi,θ̂i,j

(
xf
i

)
to predict the

corresponding response yfj of its interest. In other words, the
entity j will only need each entity i (i 
= j) to share the value of
fi,θ̂i,j

(
xf
i

)
.

Moreover, suppose that all the m entities need to simultane-
ously accomplish their separate tasks in the form of (2). Our
goal is to develop a learning strategy that features the following
characteristics:
� Privacy: None of the entities needs to share its data xi,

form of fi,· (and its estimates), or task label yi with other
entities.

� Parallel assistance: An entity has to contribute to others’
learning tasks if it needs to improve its own learning.

C. Unilateral Assistance

We first introduce the method developed in [12] for solving
the above (2) for a single entity j, without considering other
entities’ tasks. To avoid sharing sensitive information in the
training stage, we need to operate the problem (2) in each entity’s
locality. For notational brevity, we describe the method with two
learners, denoted by A and B, and suppose that B will assist A.
Like before, we use the subscript i, j to highlight the entity i’s
model for the entity j’s task.

The entity A will first initialize with y
(1)
a,a = ya. At round k

(k = 1, 2, . . .), A fits a model by using (y
(k)
a,a, xa) as labeled data

and solving

θ̂(k)a,a = arg min
θa∈Θa

En�
(
y(k)a,a, fa,θa(xa)

)
Then, A will send the fitted residual of the current round, r(k)a,a =

y
(k)
a,a − f

a,θ̂
(k)
a,a

(xa), to B. In its locality, B will fit a model by using

(r
(k)
a,a, xb) as the labeled data and solving

θ̂
(k)
b,a = arg min

θb∈Θb

En�
(
r(k)a,a, fb,θb(xb)

)
.

Then, B will calculate the residual r(k)b,a = r
(k)
a,a − f

b,θ̂
(k)
b,a

(xb) and

send y
(k+1)
a,a

Δ
= r

(k)
b,a to A.

The intuition behind the above training process is that an
entity will iteratively send the current residual and outsource pre-
dictable information from others. Consider the case where each
entity uses linear regression models and least squares estimation.
The process can be regarded as iterative projections of task labels
onto the column space of each entity’s data matrix to approxi-
mate the projection onto the space of their collated data matrix
in hindsight [12]. Consequently, during the prediction stage, to
mimic the prediction result of the oracle model estimated from
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TABLE I
ILLUSTRATION OF THE ASSISTED TRAINING INITIALIZED BY THE ENTITY A

centralized data, A will need to aggregate the prediction results of
all local models of A and B obtained along the process. Consider a
future object whose modality xf

i is observed by entity i. Then, A

will use ŷfa
Δ
=
∑k

�=1 fa,θ̂(�)
a,a

(xf
a) +

∑k
�=1 fb,θ̂(k)

b,a

(
xf
b

)
to predict

the response yfa of its interest.
We will see in Subsection II-E that unilateral assistance can

be regarded as a particular case of PAL, which can integrate
concurrent tasks into training and prediction stages.

D. PAL: From Unilateral to Reciprocal Assistance

Suppose that A has a learning objective with the label ya, and B

also has a learning objective with the label yb. A straightforward
solution is to separately run two unilateral assistance, first letting
B assist A, and then the other way around. But what if A is not
cooperative: after B assists A in the training stage, A will not
assist B? In practice, if that occurs, B can choose not to assist
A in the prediction stage. But that is not desirable, as B already
consumed computation resources, and B would like to charge
A’s prediction queries. We thus ask the question: How can an
entity be assisted while it is assisting others?

Our main idea is to let each entity seek assistance from others
by iteratively exchanging non-private statistics. Such statistics
received by an entity will contain unknown task information
deliberately injected by others so that each entity has an incentive
to ‘do well.’ In the training stage (Stage I), at the first round of
assistance, A sends its residual vector to B. Upon receipt of the
query, B blends the received vector with some statistics sb,a ∈
Rn calculated from its local task, treats it as learning labels,
and fits a model. After that, B sends the residual back to A, who
will initialize the next round. The above procedure continues
until an appropriate stop criterion is triggered. The training stage
initialized by A is then completed. After that, B will initialize
another training stage by swapping the role with A. After the
second training stage is completed, both entities can proceed to
the prediction stage.

In the prediction stage (Stage II), upon arrival of a new feature
vector, A queries the prediction results from B’s local models and
combines them with its own to form the final prediction. So does
B. Each entity will need to tell how they blend the learned labels
to ‘decode’ the faithful prediction values.

A particular PAL protocol: We suggest the following specific
protocol as a default solution. At the beginning, the entity B

will train a local model using (yb, xb), represented by θ̂b; Then,

B will calculate the residual rb
Δ
= yb − fb,θ̂b(xb). Likewise, the

entity A does so in its locality and obtains the fitted residual ra.
In the training stage initialized by A, it will send ra to B, who

will blend sb,a
Δ
= τbrb into ra (after data collation). Then, B

will treat ra + τbrb as its learning labels, and re-learns a model.
Here, τb 
= 0 is a constant specified by B, and it will be kept a

secret from A until the training stage is over. B will then send the
most recent residual back to A, who will then treat it as the label
and learn a local model. Then, A will start the second round of
learning. In this protocol, the entity B only injects information
at the first round of training but not further rounds. The above
procedure is illustrated in Table I. We will run the procedure
another time, but swapping A and B’s roles. The pseudocode is
summarized in Algorithm 1. We will explain more details in the
following remarks and discuss some extensions of the algorithm
in Subsection II-F.

Intuitive explanations: Since there is no further injection made
after the first round in the above protocol, B’s actual targeted label
from the first round is

ra + τbrb = ya + τbyb − (fa,θ̂a(xa) + τbfb,θ̂b(xb)).

In other words, the procedure can be seen as a unilateral as-
sistance (Subsection II-C) from B to A in fitting the blended
label ra + τbrb. Accounting for the A’s model θ̂a and B’s model
θ̂b locally stored at the beginning, A and B are cooperatively

learning ỹa
Δ
= ya + τbyb and predicting it at the prediction stage

(once predictions from the local models are aggregated). Like-
wise, when B initializes an assisted learning, A will blend the
received residual with τara, so the targeted label is virtually
ỹb = τaya + yb. As long as A knows τb and B knows τa (with
τaτb 
= 1), we have

ya =
ỹa − τbỹb
1− τaτb

, yb =
ỹb − τaỹa
1− τaτb

. (3)

As a result, both A and B will be able to ‘decode’ their wanted
task labels during the prediction stage. The notions of ỹa and ỹb
at Line 3, Stage II of Algorithm 1 have the same interpretation
as here, except that they are finite-sample estimates.

In summary, PAL is operated in the following manner. In
the training stage, A and B build and store their local models
iteratively (Stage I of Algorithm 1). In the prediction stage, these
models’ prediction results for a future object are aggregated to
estimate ỹa (initialized by A) and ỹb (initialized by B), which
will then be used to decode ya and yb according to (3) (Stage II
of Algorithm 1). Throughout the above procedure, each entity
acts as a separate module (see Subsection II-A).

Remark 1 (The purpose of blending): The blending aims to
ensure that A and B will complete the training stage together. If
they do not cooperate, they cannot decode desirable results in
the prediction stage. It is because an entity does not know the
injected statistics from the other side (even if τa, τb are public). If
they are dedicated to the fitting of ỹa and ỹb in assisted training,
they can model these blended labels and further obtain their own
predictions through (3).

Remark 2 (The choices of τ -values): What values do τa
and τb take? The following factors may need to be considered.
First, according to (3), it is required that τaτb 
= 1. Second, it is
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Algorithm 1: Parallel Assisted Learning: A and B Assisting Each Other.
Input: Entity A with task label ya ∈ Rn, model fa,θa : Rpa → R (θa ∈ Θa), and data xa ∈ Rn×pa . Entity B with task label yb ∈ Rn, model
fb,θb : Rpb → R (θb ∈ Θb), and data xa ∈ Rn×pb . Future objects to predict.
Note: the notation �i,j denotes entity i’s quantity for assisting entity j, for i, j ∈ {a, b}.
_____________________________________________________Stage I: Training_____________________________________________________

1: A fits a model using (ya, xa) as labeled data, by solving θ̂a = arg minθa∈Θa
En�(ya, fa,θa (xa)).

2: B fits a model using (yb, xb) as labeled data, by solving θ̂b = arg minθb∈Θb
En�(yb, fb,θb (xb)).

3: A calculates the residual ra = ya − fa,θ̂a (xa), and chooses a value τa ∈ [−1, 0).
4: B calculates the residual rb = yb − fb,θ̂b

(xb), and chooses a value τb ∈ (0, 1].

5: A initializes r(k)a,a = ra, round k = 1.
6: for k = 1, 2, . . . (until a stop criterion is satisfied) do
7: A sends r(k)a,a to B. Let 1k=1 denote one if k = 1 and zero otherwise.

8: B fits a model using y
(k)
b,a

Δ
= r

(k)
a,a + 1k=1τbrb as the label by solving θ̂

(k)
b,a = arg minθb∈Θb

En�(y
(k)
b,a , fb,θb (xb)).

9: B calculates the residual r(k)b,a = y
(k)
b,a − f

b,θ̂
(k)
b,a

(xb).

10: B sends r(k)b,a to A.

11: A fits a model using r
(k)
b,a as the label by solving θ̂

(k)
a,a = arg minθa∈Θa

En�
(
r
(k)
b,a , fa,θa (xa)

)
.

12: A calculates the residual r(k+1)
a,a

Δ
= r

(k)
b,a − f

a,θ̂
(k)
a,a

(xa).

13: end for
14: Repeat the above Lines 5-12 with subscripts a, b swapped.
15: B announces τb to A, and A announces τa to B at the same time.
16: After Stage I, let k denote the number of rounds. A stores θ̂a (Line 1), θ̂(�)a,a (Line 11), θ̂(�)a,b (Lines 8&14), � = 1, . . . , k, and similarly for B.

___________________________________________________Stage II: Prediction___________________________________________________
Initialization: Arrival of a future object whose modalities xf

a and x
f
b are observed by A and B, respectively.

1: A calculates ŷfa,a
Δ
= fa,θ̂a (x

f
a) +

∑k
�=1 fa,θ̂(�)a,a

(
xf
a

)
and ŷ

f
a,b

Δ
= fa,θ̂a (x

f
a) +

∑k
�=1 fa,θ̂(�)

a,b

(
xf
a

)
.

2: A queries the values of ŷfb,a
Δ
= fb,θ̂b

(x
f
b ) +

∑k
�=1 fb,θ̂(�)

b,a

(
x
f
b

)
and ŷ

f
b,b

Δ
= fb,θ̂b

(
x
f
b

)
+

∑k
�=1 fb,θ̂(�)

b,b

(
x
f
b

)
, which are calculated (privately) by

B.
3: A calculates ỹa

Δ
= ŷfa,a + ŷ

f
b,a and ỹb

Δ
= ŷ

f
b,b + ŷ

f
a,b.

Output: A obtains the assisted prediction ŷfa
Δ
= (1− τaτb)

−1{ỹa − τbỹb}, which follows from Equation (3). B operates similarly.

conceivable that τb 
= 0. Otherwise, the procedure initialized by
A reduces to the unilateral assistance in Subsection II-C, which
is not favorable to B. Likewise, it is appealing that τa 
= 0. Third,
since τbyb = (τb/λ)(λyb) for any nonzero constant λ, without
loss of generality, we suppose that each entity will re-scale its
response vector so that its �2-norm becomesn. Correspondingly,
if τb is very large, the signal of ya will be overwhelmed by yb
in the first training round initialized by A, which is virtually as-
sisting B. Thus, we suggest each entity standardize the response
and restrict their tau to be within a range (say [0,1] in absolute
value) to promote benign cooperation. An example mechanism
to take all the above factors into account is to encourage entities
randomly generate τa and τb from [−1, 0) and (0,1], respectively.

Remark 3 (What to blend): In the proposed PAL protocol,
B blends τbrb. In writing the paper, we also considered two
alternative options. One option is to blend B’s task label directly,
namely τbyb. Using a similar argument as above, A and B will

still target the blended label ỹa
Δ
= ya + τbyb. However, since all

the terms on the right-hand side of (3) will be transparent to A,
it can decode B’s labels during the prediction stage. This may
not be appealing for B. Thus, we suggest using τbrb instead of
τbyb as an ‘extra-protection’ of B’s private task. The other option
we considered is to continuously blend some statistics in each
round. In the suggested protocol, B will inject sb,a only in the first

round of training. In general, B can inject s(k)b,a at round k. For

example, s(k)b,a = τ
(k)
b rb, with the sequence {τ (k)b }k satisfying

∑∞
k=1 τ

(k)
b = τb. We omitted this extension for brevity. Lastly,

we point out that if B does not have a task and simply lets
yb = 0, PAL reduces to the unilateral assistance mentioned in
Subsection II-C.

Remark 4 (PAL as a privacy-preserving learning strategy):
In the default PAL training and prediction stages, entities have
complete autonomy on model fitting. They do not need to share
their local models and datasets, and they are bound to assist
each other. As a result, PAL meets our general goal outlined in
Subsection II-B. Nevertheless, the information exchange among
entities inevitably leaks some data information. To quantify data
privacy, one may further integrate a data privacy framework such
as differential privacy [13] and interval privacy [14] into the
learning approach. One may also enhance objective and model
privacy by alleviating the risk of reconstructing a trained model
through prediction interfaces [15], [16].

Remark 5 (Stop criteria): We suggest two stop criteria for
practical implementations. With the first stop criterion, the
training is repeated K rounds until the fitting error no longer
decreases much orK reaches a pre-specified limit. Since assisted
learning is designed for organizational learners, it is appealing to
have a small number of rounds due to negotiation costs in each
round. From our experiments, the number to attain near-oracle
performance is often within five.

The second stop criterion is to use the cross-validation tech-
nique [17]. In particular, A and B only use a portion of the
data (e.g., the first 70% rows aligned by data IDs) to perform
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Fig. 2. A numerical experiment of Example 1, showing the predicted response
against the expected response of entity A (top row) and entity B (bottom row) at
iterations 0, 2, and 4 of PAL. Iteration 0 means single-entity learning.

Fig. 3. The out-sample mean squared errors (tested from 1000 observations)
corresponding to Fig. 2 (Example 1).

PAL. They preserve the remaining rows to evaluate out-sample
performance as if in the prediction stage. The learning process
continues until A’s or B’s validation error no longer decreases.
In that case, the corresponding entity may terminate the training
stage. To have a desirable generalizability, the validation data
size cannot be too large. A comprehensive discussion on the
splitting ratio can be found in [17]. We used 30% of the data for
validation in the experiments.

The second stop criterion is appealing for scenarios where
entities contribute unequally. For example, suppose that A is
much more resourceful than B so that A can significantly assist
B but not the other way around. Then, A could stop early so
that B gets what it contributes. As a result, the PAL scheme
applies not only to cooperative entities but also to competing
entities. An implicit assumption of the second stop criterion is
that entities need to exchange τa and τb before the training so
that they can decode and validate at the end of each round. If
an entity does not wish to share the underlying tau initially, an
alternative option is to exchange only approximated tau at each
round (see Remark 3).

Remark 6 (Non-cooperation): Entities are incentivized to do
better together during both the training and prediction stages.
With cooperative training, each of them could potentially im-
prove the single-entity performance during prediction, which
will be shown in Figs. 2–5. Otherwise, an entity will stop early,

Fig. 4. A numerical experiment of Example 2, showing the two-class test data
of entities A (top row) and B (bottom row), along with misclassified points (in
red cross) at iterations 0, 1, and 2 of PAL.

Fig. 5. The out-sample classification error (tested on 5000 observation) cor-
responding to Fig. 4 (Example 2).

and all the entities’ performance gains will be hindered, as shown
in Table III. Also, suppose that a participating entity, say B,
chooses to perturb its results sent to others in the prediction
stage. This may compromise A’s prediction performance com-
pared with its baseline, e.g., A’s single-entity learning and A’s
assistance received from an entity other than B. In that case, A

may terminate the mutual assistance.
In summary, the PAL training can be terminated at the dis-

cretion of either A or B. It is good to ensure that A can stop
appropriately if B is adversarial, B’s model and data are not of
high quality, or A’s validation performance has reached a plateau,
and vice versa. Similarly, in the prediction, they will not help
each other if any participant is not satisfied with the prediction
performance.

Remark 7 (Computation complexity): In each training round
of Algorithm 1, each entity learns a local model. The complexity,
say cn, depends on the specific model used and sample size.
Additionally, it calculates the residual with complexity O(n)
with n the sample size. Thus, an entity’s overall complexity is
O(nk + cnk), where k is the number of rounds.

Remark 8 (Multiple entities): In general, there will be m
entities participating in m assisted training procedures, each
initialized by a particular entity. Then, during the assisted pre-
diction stage, each entity uses an appropriate linear combination
of the aggregated predictions from m procedures to obtain
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the final prediction. For example, suppose that entity i injects
τi,jyi in the training initialized by j. Let T = [τi,j ]1≤i,j≤m,
with τi,i = 1. Suppose that T is invertible. Then, following a
similar notation as in (3), the decoding is obtained by using
[y1, . . . , ym]T = T−1[ỹ1, . . . , ỹm]T.

E. Theoretical Justification of PAL

We provide theoretical analysis of PAL in this subsection.
We show that PAL can converge to a solution that is equivalent
to the training from centralized data. We can easily verify the
assumptions for linear and generalized linear models. Though
they are not mild for general supervised learning, we found from
experimental studies that the same PAL methodology works well
in a broader range of contexts. Apart from Assumption 1, we
assume the following for technical analysis.

Assumption 2: The loss function � satisfies �(y, ỹ) = s(y −
ỹ), for a nonnegative function s with s(0) = 0.

Assumption 3: Each entity i’s model fi,θ is additive in the
sense that fi,θ + fi,θ′ = fi,θ+θ′ for any θ, θ′ ∈ Θi.

Assumption 4: The function En�
(
ỹ,
∑

i∈I fi,θi(xi)
)

is con-
tinuously differentiable and strongly convex as a function of
[θi]i∈I . Also, it is strongly convex in each θi, i ∈ I .

The above assumptions hold, for example, when we use the
quadratic loss s : δ 	→ ‖δ‖22 and regression models with linear
coefficients θ, including nonlinear regression functions admit-
ting an expansion on a linear basis, e.g., polynomial, wavelet,
spline, or neural tangent kernels [18].

Recall that our goal in the ideal case is to solve (2) using
centralized data. With the blending scheme used in the default
PAL algorithm (Remarks 3&8), we define the following oracle
benchmark of PAL if data were centralized. For the assisted
learning procedure initialized by entity j, the targeted label is

ỹj = yj + τiyi (i, j ∈ I
Δ
= {a, b}), and the oracle solution is

given by the empirical risk minimization

{θ̃i,j}i∈I = arg min
{θi,j}i∈I

En�

(
ỹj ,
∑
i∈I

fi,θi,j (xi)

)
(4)

for each j ∈ I . When there is no label injection, namely τi = 0,
the above problem reduces to (2). Ideally, for a future observation
(xf

i : i ∈ I), the entity A would calculate

ỹfa = fa,θ̃a,a

(
xf
a

)
+ fb,θ̃b,a

(
xf
b

)
,

and similarly ỹfb , and then use (3) to decode the predicted
labels, say yfa and yfb . It is natural to compare this centralized
benchmark, namely yfa and yfb , with the estimates ŷfa and ŷfb
from Algorithm 1.

Theorem 1: Under Assumptions 1–4, for a fixed future ob-
servation

(
xf
i , i ∈ I

)
and for each j ∈ I , �

(
ŷfj , y

f
j

)
converges

R-linearly to zero as the number of rounds k →∞.
In the above analysis, we considered an oracle for a given set

of data. Alternatively, we may define an oracle from a statistical
perspective, treating data as randomly generated. We suppose
that the data generating process is given by the postulated model
(1) with unknown true parameters θ∗i,j . Namely, E(yj | xi, i ∈
I) =

∑
i∈I fi,θ∗i,j (xi).Under some conditions, we prove that the

PAL produces a prediction result that is close to that provided

by the underlying parameters θ∗i,j , defined by

yfj
Δ
=
∑
i∈I

fi,θ∗i,j (xi), ∀j ∈ I. (5)

Assumption 5: For all j ∈ I ,

sup
θi,j∈Θi,i∈I

∣∣∣∣∣En�

(
yj ,
∑
i∈I

fi,θi,j (xi)

)
−E �

(
yj ,
∑
i∈I

fi,θi,j (xi)

)∣∣∣∣∣
goes to zero as n→∞.

Assumption 6: E �
(
yj ,
∑

i∈I fi,θi,j (xi)
)

is uniquely mini-
mized at its data-generating parameter {θ∗i,j}i∈I , ∀j ∈ I .

The above Assumption 5 is a type of uniform law of large
numbers, commonly assumed for large-sample analysis [19].
Assumption 6 says that the loss is ‘proper’ [17] so that the
expected loss is minimized at the data-generating model. With
more sophisticated assumptions on the rate of convergence in
Assumption 5 (see, e.g., [20]), it is possible to derive the rate of
convergence of ŷfj − yfj , where yfj was defined in (5).

Theorem 2: Under Assumptions 1–6, for all j ∈ I ,
�(ŷfj , y

f
j )→ 0 in probability as k, n→∞.

F. Classification Learning

We consider the situation where each entity is performing
classification learning. For technical simplicity, we consider
binary classification. We propose to use the following solution.
Let Y = {0, 1} represent the label space, and treat y ∈ Y as
numerical values. We apply the same training procedure in
Algorithm 1. In the prediction stage, the entity A outputs P̂ (yfa =
1) = σ(cŷfa ), whereσ : R→ [0, 1] is the sigmoid function and c
is a coefficient trained to calibrate the fitted probabilities. In this
way, we can directly apply Algorithm 1 even for classification
tasks. Under some reasonable assumptions, we justify the use
of regression procedure for classification tasks.

Proposition 1: Suppose that the classification data (y, x) ∈
Y ×Rp follow a generative model in the form of y = g(θT

∗ x, ε),
where x follows an elliptical distribution with mean zero and
covariance matrix V , ε is a noise term independent with x,
and θ∗ ∈ Rp is an unknown parameter. Then, the least squares
solution (corresponding to the �2 loss) converges in probability
to θ∗/c for a fixed constant c as the sample size goes to infinity.

Examples of elliptical distribution include multivariate Gaus-
sian distribution and Student’s t-distribution. Examples of the
model g include the logistic regression model and the probit
model. For example, suppose that each entity j uses a logistic
regression model. According to the previous argument, we only
need to run PAL with linear functions gi,θi,j . Then, an entity
j will be able to (virtually) obtain a predicted linear function
f̂f
j : x 	→ θ̂Tx =

∑
i∈I gi,θ̂i,j (xi) through assisted prediction

(Section II-E). Here, θ̂j = [θ̂i,j ]i∈I →p θ∗j/cj as n, k →∞,
where θ∗j denotes the data-generating parameter of entity j’s
logistic regression model. The entity j can then estimate cj in
the following way. We define the profile log-likelihood of c as

lj(c) =
n∑

i=1

log

(
yi

1 + exp(−cŷi) +
1− yi

1 + exp(cŷi)

)
,
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where yi is the observed label and ŷi is the regression-fitted
value, and then obtain the scalar c that maximizes lj(c).

III. EXPERIMENTAL STUDY

In this section, we provide experiments to demonstrate the
performance of PAL under various circumstances. Each exper-
iment was independently replicated ten times, and the standard
errors are reported in parentheses. The computing infrastructure
is a 3.4 GHz quad-core CPU.

A. Simulated Data Examples

Example 1 (regression): An entity A is equipped with data
(ya, xa) and regression model fa. Another entity B is equipped
with data (yb, xb) and model fb. Their data can be collated.
It is desirable for A assisted by B to virtually learn a model
as if trained on (ya, xa, xb), and similarly for B. Figs. 2
and 3 provide a numerical illustration that shows both enti-
ties can simultaneously enhance their prediction performance
through PAL. In this experiment, the entities’ data are 1000
observations of [ya, x1, x2, x3] and [yb, x4, x5]. We generated
x = [x1, . . . , x5] from zero-mean Gaussian with covariances
cov(xi, xj) = 0.9|i−j|, task labels from ya = βT

a x+ εa with
βa = [1, . . . , 1], yb = βT

b x+ εb with βb = [−2,−1, 0, 1, 2],
and εa, εb from standard Gaussian. The linear model was used
for both entities’ local training.

Example 2 (classification): The scenario is similar to Exam-
ple 1, except that both entities are performing classification tasks.
A numerical example is demonstrated in Figs. 4 and 5. The data
held by A and B are [ya, x1] and [yb, x2], respectively, where

1000 observations of ya, x
Δ
= [x1, x2] were generated from the

sklearn Moons dataset (with noise level 0.5), and yb conditional
on x follows from a logistic regression model with coefficients
[5, 5]. The logistic regression model was used for both entities’
local training.

B. Influence of Different Factors

In this experiment, we simulated two datasets.
Dataset 1 is from ya = x1 + · · ·+ x5 + εa, yb = −2x1 −

x2 + x4 + 2x5 + εb, where x ∈ R5 is zero-mean Gaussian with
covariance [0.9|i−j|]i,j , and εa, εb are standard Gaussian noise.

Dataset 2 is from ya = x1 + · · ·+ x5 + εa, yb = 10
sin(πx1x2) +20(x3 − 0.5)2 +10x4 + 5x5 + εb (‘Friedman-1’
dataset), where x, εa, εb are similarly defined as above.

We supposed that the entity A held x1, x2, x3 and B held
x4, x5, and they used τa = 1, τb = −1. The PAL was run for
a maximum number of ten rounds. The stop criterion based on
local validation was used (see Remark 5), so the actual number
of rounds could be smaller than ten.

We considered four model choices of A and B in the second
row of Table II, where ‘LR’ means linear model, and ‘RF’ means
random forest with 50 trees and a max tree depth of five. From the
results in Table II, PAL can significantly improve performance
compared with single-entity learning. To study the influence of
wrongly-transmitted τa, τb, we did the following ablation study.
We took the linear-model case (namely ‘LR-LR’) as an example.
Suppose that A and B send wrong tau-values to each other,
with τ ′a = (1− qa)τa, τ

′
b = (1− qb)τb. Here, qa, qb describes

TABLE II
(SUBSECTION III-B) THE PERFORMANCE OF A’S SINGLE-ENTITY LEARNING

(ea,self), PAL LEARNING (ea,pal), AND ORACLE LEARNING BY

CENTRALIZING DATA (ea,orac) FOR DIFFERENT DATASETS AND MODELS, AS

EVALUATED BY THE ROOT MEAN SQUARED ERROR (RMSE). SIMILAR

PERFORMANCES FOR B ARE REPORTED

TABLE III
(SUBSECTION III-B) THE PAL PERFORMANCE AND THE AVERAGE NUMBER OF

ASSISTANCE ROUNDS (DENOTED BY k) UNDER VARIOUS DEVIATIONS

TABLE IV
(SUBSECTION III-C) THE PERFORMANCE OF A’S SINGLE-ENTITY LEARNING

(acca), PAL (acca,pal), AND ORACLE (acca,pal), AS EVALUATED BY THE

CLASSIFICATION ACCURACY (IN PERCENTAGE). SIMILAR QUANTITIES ARE

DEFINED FOR THE ENTITY B

the level of deviations. The performance results under various
(qa, qb) are summarized in Table III. The results show that more
deviations will lead to worse cooperative performance and an
earlier stop of assisted training.

C. Dependence on Task Difficulty

In this experiment, we studied the dependence of PAL perfor-
mance on task difficulty. We considered a similar classification
setting as in Example 2. The entities A and B each held one
feature and used the PAL in Subsection II-F. In A’s dataset 1, we
generated A’s task labels from the logistic regression model with
function 5x1 − 5x2. In A’s dataset 2, A’s labels were generated
from the Moon dataset, which has a nonlinear decision boundary
and does not fall into the generalized linear model in Proposi-
tion 1. We considered two different tasks for B. The ‘easy’ one
corresponds to the label generated from the logistic regression
function 5(x1 + x2), and the ‘difficult’ one is from the function
x1 + x2 (since the signal-to-noise ratio is smaller). The results
summarized in Table IV show that A’s PAL performance is
not sensitive to B’s task difficulty, despite A’s task. Also, the
extent to which A could assist B highly depends on B’s task
difficulty.
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TABLE V
THE PERFORMANCE OF ENTITY A’S SINGLE-ENTITY LEARNING (ea,self),

A’S PAL WITH τa = 1, τb = −1 (ea,pal1 ), AND A’S PAL UNDER

τa = 0.1, τb = −0.1 (ea,pal2 ), UNDER VARIOUS NUMBERS FEATURES

pa HELD BY A. SIMILAR RESULTS ARE REPORTED FOR ENTITY B

D. Real-World Case Study: Medical Benchmark

There exists a large market of PAL in, e.g., the internet-of-
things [21], autonomous mobility [22], industrial control [23],
unmanned aerial vehicles [24], and biological monitoring [25].
We will take the medical industry as an example to illustrate
such learning scenarios. It is common for medical organizations
to acquire others’ assistance to improve clinical care [26], reduce
capital costs [27], and accelerate scientific progress [28].

We considered the MIMIC3 clinical database [29], which con-
sists of several divisions that collected various features from the
same cohort of patients. Suppose that the Intensive Care Unit (A)
aims to predict the systolic blood pressure, and the Laboratory
(B) will predict the length of stay. We supposed that A holds
the first pa variables, while B holds the remaining variables.
Such an experimental design was intended to show that the PAL
performance gain depends on the relative information offered by
the assisting entity. Both entities used the random forest model
with 50 trees and a max tree depth of five. We pre-processed
MIMIC3 in a way similar to [30], [31], and obtained a dataset
of 6916 patients and 16 variables that exclude the two task
variables of A and B. In particular, the ordered variables are
named capillary refill rate, diastolic blood pressure, fraction
inspired oxygen, heart rate, height, mean blood pressure, oxygen
saturation, respiratory rate, temperature, weight, pH, glucose,
Glasgow coma scale total, Glasgow coma scale, eye Glasgow
coma scale motor, and Glasgow coma scale verbal. We used
35% training, 15% validation (Remark 5), and 50% testing. The
results summarized in Table V show that PAL can significantly
improve an entity’s local learning. Also, such an improvement
could depend on the number of features offered by the other
entity. For example, A can help B more than the other way
around if A gains more variables. We also experimented with
two different pairs of τa, τb. The PAL performance is insensitive
to the choice of tau values.

E. Real-World Case Study: Census Benchmark

In this subsection, we will use the Census dataset [32] to
demonstrate a mixed-type PAL, where A and B perform clas-
sification and regression tasks, respectively. The data contain
anonymous information, including income, age, education, oc-
cupation, capital gain or loss, working class, marital status,
occupation, relationship, race, gender, native country, and work-
ing hours per week. Suppose that A’s goal is to train a binary

TABLE VI
(SUBSECTION III-E) THE PERFORMANCE OF A’S CLASSIFICATION

LEARNING (EVALUATED BY ACCURACY IN PERCENTAGE) AND B’S REGRESSION

LEARNING (EVALUATED BY RMSE), UNDER VARIOUS DP LEVELS

(INDEXED BY THE PRIVACY BUDGET ε)

classifier to predict whether an individual’s income is higher than
$50 k or not, while B’s goal is to train a regression to predict the
working hours per week. Suppose that A holds the attributes of
age and education, while B holds the remaining attributes. We
run the PAL for A and B. Since A’s task is classification, it also
ran a calibration step as discussed in Subsection II-F. In running
this experiment, we injected noise into the transmitted residual
so that it satisfies different levels of differential privacy [33].
In particular, we truncated the transmitted residual at each
round within a percentile and added the residual with a suitable
amount of noise. The results, summarized in Table VI, show
that the introduction of reasonable privacy guarantees does not
significantly degrade the performance.

More implementation details are described below. The orig-
inal data have been split into 32561 instances for training
and 16281 for testing, randomly replicated ten times. Next,
we briefly introduce how we implemented differential privacy.
Recall that a randomized mechanismM : D 	→ Rwith domain
D and range R satisfies ε-differential privacy if for any two
adjacent inputs D1,D2 and for any subset of outputs S ⊆ R,
it holds that P (M(D1) ∈ S) ≤ eεP (M(D2) ∈ S) [13]. Here,
the adjacency means that D1,D2 only differ in one row. Briefly
speaking, differential privacy measures privacy leakage by a
privacy budget ε that bounds the likelihood ratio of the random
output under two databases differing in a single individual. The
smaller ε is, the more private for any individual. Intuitively,
a small ε means that privacy is better protected. A standard
randomized mechanism is the following. Suppose that a query
function f : D → Rd satisfies ‖f(D1)− f(D2)‖1 ≤ c for any
adjacent D1,D2 and some constant c > 0. Here, ‖·‖1 is the
standard �1 norm of vectors. Let Lap(λ) denote the Laplace dis-
tribution with density function pλ(x) = (2λ)−1 exp(−|x|/λ).
Then, M(D) = f(D) + ζ, with ζ following i.i.d. Lap(c/ε)
(Laplacian noise), is a mechanism that satisfies ε-differential
privacy [13]. In our experiment, at each round of transmission,
we truncated the residual by their %10 and %90 quantiles.
Let c denote that corresponding interval width. We added i.i.d.
Lap(c/ε) noise to each element.

IV. CONCLUSION

The interactions between learning entities in privacy-aware
scenarios pose new challenges that cannot be well addressed
by classical machine learning. In this work, we proposed the
notion of Parallel Assisted Learning, where the general goal
is to expand single-entity learning capabilities with assistance
from multiple entities but without sharing private modeling
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algorithms or data. Entities are allowed to hold heterogeneous
tasks, such as regression on different response tasks, classifi-
cation on various label tasks, and a mixture of regression and
classification tasks. Theoretical analysis from both optimization
and statistical perspectives is provided to justify the developed
methods. An interesting future problem is to study PAL for
unsupervised learning tasks.

APPENDIX A
PROOF OF THEOREM 1

Proof: The main idea of the proof is to connect the PAL
procedure with the block coordinate descent algorithm. We still
consider the two-entity problem for notational simplicity.

Recall that the notation θ̂
(k)
i,j in Algorithm 1 denotes entity

i’s estimated parameter at round k of the learning initialized by
entity j, for k = 1, 2, . . .. For notational convenience, we define

θ̂(0)a,a = θ̂a, θ̂
(0)
b,a = τbθ̂b, θ̂

(0)
a,b = τaθ̂a, θ̂

(0)
b,b = θ̂b,

with θ̂a and θ̂b defined in Algorithm 1 (lines 1–2).
To prove the theorem, simple calculations using the definition

of yfa , y
f
b and the lines 15–16 of Algorithm 1 show that we only

need to prove that
∑k

�=0 θ̂
(�)
i,j converges R-linearly to θ̃i,j as

k →∞, ∀i, j ∈ I .
Recall the following oracle benchmark if A had all the data

from B.

{θ̃i,a}i∈I = arg min
{θi,a}i∈I

En�

(
ỹa,
∑
i∈I

fi,θi,a(xi)

)
, (6)

with ỹa
Δ
= ya + τbyb, I = {a, b}, and similarly for {θ̃i,b}i∈I .

Suppose that A runs the following block-wise descent algo-
rithm in hindsight. At the kth round, k = 1, 2, . . ., the entity A

iteratively solves

β̂
(k)
b,a = arg min

βb,a∈Θb

En�
(
ỹa, fa,β̂(k−1)

a,a
(xa) + fb,βb,a

(xb)
)
, (7)

β̂(k)
a,a = arg min

βa,a∈Θa

En�
(
ỹa, fa,βa,a

(xa) + f
b,β̂

(k)
b,a

(xb)
)
. (8)

Under Assumptions 2 and 3, we can establish a one-to-one
mapping between the above procedure and Algorithm 1, by
letting (for k = 1, 2, . . .)

βb,a =

(
k−1∑
�=0

θ̂
(�)
b,a

)
+ θb,a, β̂

(k)
b,a =

k∑
�=0

θ̂
(�)
b,a,

βa,a =

(
k−1∑
�=0

θ̂(�)a,a

)
+ θa,a, β̂(k)

a,a =
k∑

�=0

θ̂(�)a,a.

Then, the PAL and the block-wise descent algorithms are
operationally equivalent. Note that at each round of training,
an entity only needs to fit the most recently received residual
without accessing others’ data. According to Assumption 4
and [34, Proposition 3.4], we conclude that β̂i,a =

∑k
�=0 θ̂

(�)
i,a

converges R-linearly to θ̃i,a as k →∞,∀i ∈ I = {a, b}. Similar
results hold with the subscript a replaced with b. �

APPENDIX B
PROOF OF THEOREM 2

Proof: First, we prove that if (yi, xi : i ∈ I) are generated
from the model

E(yj | xi, i ∈ I) =
∑
i∈I

fi,θ∗i,j (xi) (9)

with underlying parameters θ∗j = [θ∗i,j ]i∈I , the estimated param-
eter

θ̂j = [θ̂i,j ]i∈I
Δ
= arg min

[θi,j ]i∈I
E �

(
yj ,
∑
i∈I

fi,θi,j (xi)

)

converges in probability to θ∗j . For notational convenience, let

h(θj) = �

(
yj ,
∑
i∈I

fi,θi,j (xi)

)
,

where θj = [θi,j ]i∈I . For an arbitrary ε > 0, we will prove that

P (‖θ̂j − θ∗j‖2 ≥ ε)→ 0 (10)

as n→∞.
By the definition of θ̂j we have

Enh(θ̂j) ≤ Enh(θ
∗
j) = Eh(θ∗j) + op(1)

where the last equality is implied by Assumption 5. Let Θ =
Θa ×Θb. Thus, we have

Eh(θ̂j)− Eh(θ∗j) ≤ Eh(θ̂j)− Enh(θ̂j) + op(1)

≤ sup
θj∈Θ

∣∣∣∣Enh(θj)− Eh(θj)

∣∣∣∣+ op(1), (11)

which converges to zero in probability as n→∞.
Assumptions 4&5 imply that

inf
θj∈Θ:‖θj−θ∗j‖2≥ε

Eh(θj) > Eh(θ∗j). (12)

Inequality (12) ensures that there exists δ > 0 such that
Eh(θj) ≥ Eh(θ∗j) + η for all θj satisfying ‖θj − θ∗j‖2 ≥ ε.
Therefore,

P (‖θ̂j − θ∗j‖2 ≥ ε) ≤ P (Eh(θ̂j) ≥ Eh(θ∗j) + η)

which, according to (11), further goes to zero as n→∞. This
concludes the proof of (10).

Second, we will prove �(ŷfj , y
f
j )→ 0 in probability as k, n→

∞. According to Assumption 3, for the assisted training initial-
ized by entity j, the data-generating model behind (ỹj , xi : i ∈
I) is in the form of (9) with parameter

θ̃∗i,j = θ∗i,j +
∑

�∈I,� 
=j

τ�θ
∗
i,�.

The proof of the first part implies that the ‖θ̃i,j − θ̃∗i,j‖2 → 0

in probability as n→∞, where θ̃i,j was defined in (4) and
also used in the proof of Theorem 1. Applying Theorem 1 and
Assumption 2, we conclude that �(ŷfj , y

f
j )→ 0 in probability as

k, n→∞. �

Authorized licensed use limited to: University of Minnesota. Downloaded on December 27,2022 at 16:46:17 UTC from IEEE Xplore.  Restrictions apply. 



5858 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

APPENDIX C
PROOF OF PROPOSITION 1

Proof: It was shown in [35] that θ∗ is in the same space as
V −1E(x | y). Since θ∗ is a vector that lines in a one-dimensional
subspace of Rp, if we consider y = 1,

θ∗ = λV −1E(x | y = 1) (13)

for some unknown constant λ. Additionally, since

E(xy) = P (y = 1)E(xy | y = 1) + P (y = 0)E(xy | y = 0)

= P (y = 1)E(x | y = 1),

(13) implies that

θ∗ =
λ

P (y = 1)
V −1E(xy). (14)

Note that the ordinal least squares applied to (y, x) gives

θ̂(ls)
Δ
= (Enxx

T)−1En(xy).

Thus, θ̂(ls) converge in probability to θ∗/c for a fixed constant
c under the law of large numbers, as the sample size goes to
infinity. It is worth noting that the above arguments imply that
c = λ/P (y = 1). �
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