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Abstract

Continual learning (CL) is an emerging research area aiming to emulate human
learning throughout a lifetime. Most existing CL approaches primarily focus on
mitigating catastrophic forgetting, a phenomenon where performance on old tasks
declines while learning new ones. However, human learning involves not only re-
taining knowledge but also quickly recognizing the current environment, recalling
related knowledge, and refining it for improved performance. In this work, we
introduce a new problem setting, Adaptive CL, which captures these aspects in
an online, recurring task environment without explicit task boundaries or identi-
ties. We propose the LEARN algorithm to efficiently explore, recall, and refine
knowledge in such environments. We provide theoretical guarantees from two per-
spectives: online prediction with tight regret bounds and asymptotic consistency of
knowledge. Additionally, we present a scalable implementation that requires only
first-order gradients for training deep learning models. Our experiments demon-
strate that the LEARN algorithm is highly effective in exploring, recalling, and
refining knowledge in adaptive CL environments, resulting in superior performance
compared to competing methods.

1 Introduction
Inspired by the process of human lifelong learning, Continual Learning (CL), also referred to
as Lifelong Learning, aims to develop models that can sequentially learn tasks, simultaneously
preserving and consolidating existing knowledge. The primary focus of CL approaches is on
preventing catastrophic forgetting [1, 2], a phenomenon where the performance of previously learned
tasks declines as new tasks are learned [3]. Traditional CL literature [4–8] mainly addresses a
sequence of tasks with known task identities. In recent years, however, the focus has shifted towards
more challenging scenarios in CL research, with growing interest in one scenario called task-free
CL [9–13], where task identities and boundaries are unknown during training. In these instances,
it becomes crucial for the learner to comprehend the current environment and incorporate new
information without catastrophic forgetting, a more challenging problem due to the lack of task
information.

While numerous technical approaches have been developed in CL to mitigate forgetting during the
learning of new tasks, an underexplored area is the enhancement of machine performance on recurring
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Figure 1: An illustration of the proposed LEARN algorithm: 1) Exploration (black lines): the
fast learner updates using the new data. 2) Recall (green arrows): the output of the fast learner is
dynamically mixed with those of the slow learner 3) Refinement (blue lines): each model in the slow
learner is updated with varying learning rates. The ground truth is marked as gray dashed lines.

tasks through the swift task recognition and recall of prior information. This is a critical aspect of
human lifelong learning. As humans encounter changing environments, they can swiftly recollect
associated memory and adapt their learning when tasks switch, gradually building a knowledge
base to improve their effectiveness and proficiency in recurring tasks. We believe such a learning
process involves three key components: quick recognition of new environments, recall of related
knowledge, and refinement of existing knowledge. Consequently, this highlights the need to explore
the broader scope of CL problems that not only address catastrophic forgetting but also incorporate
the above three human-inspired capabilities.

In this paper, we introduce Adaptive CL, a novel problem designed to capture the multi-dimensional
nature of human learning. This framework involves learning from dynamic online environments with
recurring tasks, while task boundaries and identities remain unknown. To perform well, learners
are expected to make three interrelated decisions 1) swiftly identify the current task, overcoming
challenges posed by unknown task boundaries and identities, 2) recall knowledge on previous tasks to
adapt effectively to recurring tasks, and 3) refine existing knowledge by integrating new information,
thereby improving future performance on the same task.

To tackle the Adaptive CL problem, we will develop a novel approach that automatically unifies
the above three decisions with provable performance guarantees. A critical reader may question
why not adopt a straightforward approach of treating the above decisions as three separate steps:
change-point detection, hypothesis-testing, and online update. Although this heuristic could provide
a viable approach, errors in separate steps may propagate and accumulate over time, resulting in a
disconnected, inefficient, and complex continual learning process. Instead, we propose a unified
algorithm called LEARN (Lifelong Exploration, recAll, and Refinement of kNowledge). LEARN
consists of three stages: exploration, recall, and refinement, as illustrated in Figure 1. During the
exploration stage (black dashed lines), a fast learner is updated according to new data observations;
In the recall stage (green arrows), the prediction (red lines) leverages recent information and stored
knowledge by mixing the fast learner with the slow learner, enabling swift adaptation to familiar tasks;
In the refinement stage (blue dashed lines), the slow learner updates the stored knowledge for future
use by integrating the fast learner. Furthermore, we present a comprehensive theoretical foundation by
offering guarantees from dual perspectives: performance-level regret bound that ensures near-optimal
decision-making, and knowledge-level consistency to the ground truth in hindsight. These guarantees
ensure that our approach is both powerful in prediction and interpretable in gained knowledge
in the Adaptive CL context. For application in large-scale models such as deep neural networks,
we introduce a Gaussian mixture model (GMM) approximation of the proposed LEARN, which
requires only first-order gradients for training deep learning models. This approximation enables
efficient training while preserving the efficiency and interpretability of our approach, making it a
practical solution for real-world applications. Our experimental evaluation illustrates the success of
the LEARN algorithm in several simulated and benchmark data cases.

1.1 Main contributions
In this paper, our contributions are highlighted as follows:

•We propose Adaptive CL, a novel framework that cooperates with a broader set of human learning
characteristics: rapid task recognition, efficient recall of related knowledge, and continuous refinement
of knowledge.
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•We develop the LEARN algorithm, a tailored solution that addresses the aforementioned challenges
through a three-step process that encompasses exploration, recall, and refinement. We establish the
theoretical foundations for the LEARN algorithm by delivering performance-level regret bounds and
knowledge-level asymptotic consistency.

•We provide a scalable implementation of our algorithm, which facilitates its usage in deep learning.
Our proposed LEARN algorithm exhibits a superior ability to explore, recall, and refine knowledge
in Adaptive CL settings, surpassing the performance of competing methods.

1.2 Related work

Continual learning Continual Learning (CL) targets learning in dynamic environments with re-
stricted historical data access. Many existing works have achieved significant success in preventing
catastrophic forgetting, namely preserving performance on old tasks while learning new tasks. Ex-
isting CL approaches can primarily be divided into three categories: regularization, replay, and
dynamic architecture. Regularization-based methods [4, 14–16] minimize forgetting by imposing
constraints on critical parameters from previous tasks. Replay approaches generate pseudo sam-
ples [5] or store actual samples [6, 17] of prior tasks to implicitly safeguard essential parameters.
Alternatively, stored data can be used to constrain optimization [7, 18, 19], preventing gradient
updates in crucial directions. Finally, dynamic architecture methods either train separate masks of
a dense neural network [8, 20, 21] or maintain dynamic model structures [22, 23]. Experimental
results demonstrate the superior performance of these methods in efficiently retaining knowledge
and preventing catastrophic forgetting when training in a changing environment. Many recent works
have theoretically investigated the cause of forgetting, specifically the impact of factors such as task
similarity and ordering on generalization performance [24, 25]. Additionally, the semi-supervised
and unsupervised CL settings have also been studied [26, 27].

Task-free continual learning Task-free CL presents a more complex scenario than traditional CL, as it
deals with unknown task boundaries and identities during training. In this setting, learners must retain
knowledge to prevent catastrophic forgetting and quickly recognize the current task. Existing works
have proposed replay-based and dynamic architecture methods. Replay-based methods [11, 28, 29]
maintain a small buffer of previous data and replay a small batch every step. The dynamic architecture
approach expands the number of models upon detecting a new task using the Dirichlet process [10]
or discrepancy distances [13, 30].

Both traditional and task-free CL contribute to a profound understanding of how to learn without
catastrophic forgetting during training, and they demonstrate promising results in experiments. In this
paper, we aim to enhance the CL framework by integrating training and testing stages to better emulate
realistic human learning scenarios. The learner must not only adapt to the changing environment but
also efficiently exploit knowledge by recalling and consolidating relevant information. This dual
objective is analogous to the need for both exploration and exploitation in reinforcement learning [31].

Bayesian Learning Bayesian learning [32] aims to obtain a posterior distribution, capturing more
information such as prediction uncertainty than a point estimate. It employs Bayes’ rule, where the
posterior distribution is determined by the likelihood and prior distribution. However, calculating the
marginal distribution, which requires the integration of joint likelihood, is computationally expensive.
Consequently, Bayesian deep learning focuses on scalable approximate inference methods, such
as Variational Inference [33, 34], Laplace approximation [35], and stochastic gradient Langevin
dynamics [36]. Despite its popularity and powerful applications, Bayesian learning may not be
the most suitable choice in changing environments. Methods like the Dirichlet process [37], a
Bayesian nonparametric model for clustering and density estimation, still require data generated from
a stationary distribution. To address issues in environments with arbitrary or adversarial changes,
Ding et al. [38] proposed a recursive update that mixes with a uniform distribution at every step,
along with theoretical performance guarantees. This recursive update inspires our algorithm due to
its similarity to the changing environments and Adaptive CL.

Expert learning Expert learning, a sub-field of online learning, focuses on sequentially combining
advice from multiple experts to make predictions [39, 40]. In static environments, Exponential
Weights (EW) is a popular no-regret strategy, where the average loss converges to that of the
best expert in hindsight [41–43]. In the more challenging non-stationary environments, the Fixed-
Share algorithm achieves no-regret compared to the non-stationary sequence of optimal experts in
hindsight by maintaining each mixing weight above a certain level [44]. In recurring non-stationary
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environments, Bousquet and Warmuth [45] proposed an efficient algorithm called Mixing-Past-
Posteriors (MPP). Building on this work, Koolen et al. [46] provides a Bayesian interpretation of
MPP and improves the regret bound with a modified mixing scenario. Although our setting is distinct
from expert learning, our algorithm draws inspiration from Fixed-Share and MPP to track a changing
environment by recalling knowledge, namely mixing with knowledge.

2 Adaptive CL

2.1 Problem formulation
Many recent works [9–11] have extended traditional Continual Learning (CL) to the task-free CL
setting, where task boundaries and identities are unknown during training. However, these approaches,
which learn from a training set and evaluate on a separate test set, do not fully reflect human learning
capabilities of swift adaptation to previously encountered tasks and continuous knowledge refinement.

To better emulate human cognition, we introduce a novel problem setting, Adaptive CL, characterized
by an online, recurring task environment without explicit task boundaries or identities. This setting
poses challenges in rapidly recognizing, adapting, and refining knowledge in response to changes in
the task distribution. These abilities are essential for improved performance and realistic CL, closely
resembling human learning capabilities.

We assume a sequential data stream (xt, yt) ∈ X × Y for time t = 1, . . . , T . The learner is asked
to predict the label ŷt with input xt based on historical data, {xi, yi}t−1

i=1 . In Adaptive CL, (xt, yt)
independently follows unknown distribution Dt, where the sequence of distributions D1, . . . ,DT

consists of mT distinct types of distributions and has kT − 1 change points. namely

kT ≜ 1 +

T−1∑
t=1

1(Dt+1 ̸= Dt) < T, mT ≜ Card({Dt}Tt=1) < kT ,

where Card(·) denotes the set cardinality. For simplicity, we omit the subscript T in mT and kT , and
assume the m modes, namely distinct distributions, are {D̃j}mj=1, which means {D̃t}Tt=1 = {Dt}Tt=1.
In Adaptive CL, our objectives are two-fold: 1) achieve a small cumulative loss by enabling the learner
to swiftly adapt to previously learned tasks, and 2) ensure that the learned knowledge converges to
the underlying ground truth.

2.2 Questions in mathematical form
Swift adaptation to previously learned tasks and knowledge refinement are crucial for effectively
navigating dynamic environments and making accurate predictions in the face of changing and
recurring tasks. To better quantify these objectives, we mathematically formulate them as two key
questions:

Question 2.1 (Regret Bound). Given a model classM ≜ {M( · ; θ) : X 7→ Y, θ ∈ Θ}, what is the
optimal upper bound for the cumulative expected regret with respect to the best competitors from
hindsight? The cumulative expected regret for a randomized algorithm A is defined as

E [RegretT ] ≜
T∑

t=1

E
[
lAt

]
−

T∑
t=1

min
θ∈Θ

E [lt(θ)] ,

where lt(θ) ≜ L (M(xt; θ), yt) for a given loss function L, and lAt ≜ Eθ∼πt(A)[lt(θ)] with πt(A), a
distribution over Θ produced by algorithm A.

A small regret bound in Question 2.1 implicitly guarantees the swift adaptation to previously learned
tasks, which is essential for performance improvement. Otherwise, the learner will learn from scratch
for every recurring task, which is sub-optimal. To better understand knowledge, we propose the
following question regarding convergence. In addition, we denote the frequency of mode D̃j as
freqT,j ≜

∑T
t=1 1(Dt = D̃j)/T , and [n] ≜ {1, . . . , n} for any n ∈ N.

Question 2.2 (Knowledge Convergence). Will the knowledge converge to the ground truth? The
convergence can be characterized by the following two conditions. Suppose algorithm A maintains
a density gt(θ) over Θ, which represents the learned knowledge, at each time t ∈ [T ]. We say the
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knowledge mass outside the ground truth vanishes, if

lim
ε→0

lim
T→∞

E

[∫
θ:d(θ,∪T

t=1Ct)≥ε

gT (θ)dθ

]
= 0,

where the set of minimizers Ct ≜ argminθ∈Θ E[lt(θ)], and set distance d(θ,A) ≜ mina∈A ∥θ− a∥2
for any A ⊆ Θ. Moreover, suppose freqT,j , the frequency of j-th mode D̃j , converges to qj for
j ∈ [m] with

∑
j∈[m] qj = 1. We say the knowledge converges to the ground truth, if for any j ∈ [m],

lim
ε→0

lim
T→∞

E

[∫
θ:d(θ,Bj)<ε

gT (θ)dθ

]
= qj ,

where mode minimizers Bj ≜ argminθ∈Θ E(x,y)∼D̃j
[L(M(x; θ), y)] and B1, . . . ,Bm are disjoint.

Knowledge convergence, as defined in Question 2.2, ensures the knowledge converges to the under-
lying ground truth, which captures knowledge refinement. To the best of our knowledge, existing
literature has not fully addressed one crucial aspect of human learning, where the learner should
swiftly adapt to previously learned tasks. This feature is implicitly guaranteed by the regret bound
formulated in Question 2.1. Additionally, the understanding of knowledge refinement has been
limited in the literature. Our work, through Question 2.2, aims to contribute to a deeper understanding
of knowledge convergence and its role in Adaptive CL.

3 LEARN algorithm
In this section, we introduce LEARN (Lifelong Exploration, recAll, and Refinement of kNowledge),
a novel algorithm designed to address the challenges of adaptive CL through exploration, knowledge
recall, and refinement. This approach facilitates swift adaptation and ongoing consolidation of
knowledge. The intuition and detailed explanation of LEARN can be found in Section 3.1, while
theoretical guarantees demonstrating its effectiveness are provided in Section 3.2. In Section 3.3, we
discuss the scalable implementation of LEARN, highlighting its applicability in deep learning.

3.1 Algorithm description
The LEARN algorithm, as shown in Algorithm 1, consists of two main components: fast and slow
learners. The fast learner absorbs new data in the adaptive CL environment through exploration, using
tempered Bayesian updates [47–49]. The slow learner consolidates previously learned information,
laying the foundation for swift recognition and adaptation to recurring tasks for later knowledge recall.
The LEARN operates in three steps: 1) exploration, 2) recall, and 3) refinement. During exploration,
the algorithm processes new data with the fast learner. In the recall stage, the fast learner recollects
stored knowledge through mixing with the slow learner, facilitating rapid adaptation to previously
learned tasks. Finally, in the refinement stage, the information from the fast learner is integrated into
the slow learner using a mixing process to enhance the quality of the stored information.

When receiving the input xt at time t, the agent randomly samples θ̂t from the fast learner ft−1 and
provides prediction ŷt = M(xt, θ̂t). Upon receiving the true label yt, the fast learner is updated in
the exploration stage, Line 5, using the tempered Bayesian update with temperature η:

f̃t(θ) ∝ ft−1(θ) exp{−ηlt(θ)}.
While for stationary data, this update leads the fast learner to converge exponentially fast to the point
mass on the minimizer, it is an undesirable feature in non-stationary environments due to the long
time required to increase the exponentially small probability on the new minimizer. To address this,
in the recall stage, the fast learner recalls the slow learner gt−1 with recalling ratio αt ∈ [0, 1] (Line
6) as:

ft(θ)← (1− αt)f̃t(θ) + αtgt−1(θ).
This mixing step enables the agent to swiftly adapt to previously learned tasks, as the mass of gt−1

near the corresponding minimizer is relatively large. In the refinement stage (Line 7), the slow learner
gt−1 is consolidated with fast learner f̃t using a learning rate γt ∈ [0, 1]:

gt(θ)← gt−1(θ)− γt

{
gt−1(θ)− f̃t(θ)

}
.

The exploration, recall, and refinement stages of LEARN collectively promote rapid adaptation
and enhanced performance on previously learned tasks. To further elucidate the adaptability and
knowledge convergence, we will delve into its theoretical underpinnings in the subsequent analysis.
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Algorithm 1 LEARN: Lifelong Exploration, recAll, and Refinement of kNowledge
Input Model classM = {M(·; θ) : θ ∈ Θ}, data {(xt, yt)}Tt=1, mixing {αt}Tt=1, forgetting

{γt}Tt=1, step size η > 0, loss function L : Y × Y 7→ R≥0.
Output Fast learner f̃T , slow learner gT .

1: Initialization: f0(θ) = g0(θ) = 1/Vol(Θ).
2: for t = 1→ T do
3: Receive xt, randomly sample θ̂t from density ft−1, and predict ŷt = M(xt; θ̂t).
4: Receive yt and corresponding loss lt(θ) ≜ L(M(xt; θ), yt).
5: Exploration: f̃t(θ)← ft−1(θ) exp{−ηlt(θ)}, and normalize f̃t.
6: Recall: ft(θ)← (1− αt)f̃t(θ) + αtgt−1(θ).

7: Refinement: gt(θ)← (1− γt)gt−1(θ) + γtf̃t(θ).

3.2 Theoretical analysis and insights into the adaptiveness
In our theoretical analysis, we first tackle Question 2.1 by providing a regret upper bound for
Algorithm 1 in Proposition 3.1. The technical details are included in Appendix.

Proposition 3.1. Assume set Θ ⊆ Rd is compact with supθ∈Θ ∥θ∥2 ≤ D, and |lt(θ) − lt(θ
′)| ≤

Zt∥θ − θ′∥2 for all θ, θ′ ∈ Θ, with E[Z2
t ] ≤ v2 . Then there exists ηopt > 0, stated in the Appendix,

such that Algorithm 1 with αt = k/T and γt = 1/t yields an expected cumulative regret

E [RegretT ] ≤Dv

√
2T

(
md log

DvT

2
+ 2k log

T

k
+ k logmk +md

)
+ 1

=O
(
Dv
√
T
√
md log{DvT}+ k log{mT}

)
.

(1)

Leveraging adaptation to reduce dimensionality costs. In the upper bound, we observe two distinct
sources of loss. Excluding the shared Dv

√
T , the first term,

√
md log{DvT}, is dimension-related

and signifies the cost of learning a new distribution, occurring m times. This dimension-related aspect
is particularly crucial in deep learning, where large dimensions are commonplace. The fact that it is
not linked to k indirectly demonstrates the rapid adaptation and knowledge refinement capabilities of
LEARN. The second term,

√
k logmT , is dimension-free and encapsulates the information needed

to identify task boundaries and the cost associated with retaining the current distribution. This
component has also been recognized and explored in expert learning literature [46, 50].

Next, we turn our attention to the knowledge refinement, specifically the convergence addressed in
Question 2.2, by presenting Proposition 3.2. This crucial result demonstrates that the knowledge in
Algorithm 1 indeed attains the desired convergence properties.

Proposition 3.2 (Convergence). Under the assumptions in Proposition 3.1. Suppose {E[lt]}Tt=1 is
uniformly strict, namely for any ε > 0, there exists δ > 0 such that,

min
1≤t≤T

inf
θ:d(θ,Ct)≥ε

{E[lt](θ)−min
θ′

E[lt](θ′)} ≥ δ.

If k = o(T/ log T ), then there exists ηopt,T such that Algorithm 1 with αt = k/T and γt = 1/t has
the following properties:

1. For any ε > 0,

lim
T→∞

E
∫
θ∈Θ:d(θ,∪tCt)≥ε

gT (θ) = 0,

where Ct ≜ argminθ∈Θ E[lt(θ)].

2. If further assume for limT→∞ freqT,j = qj and the minimizer {Bj}mj=1 are disjoint. Then

lim
ε→0

lim
T→∞

E
∫
θ∈Θ:d(θ,Bj)≤ε

gT (θ) = qj ,

where Bj ≜ argminθ∈Θ E(x,y)∼D̃j
[L(M(x; θ), y)].
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From black-box to knowledge building. The convergence result presented in Proposition 3.2
provides a mathematical insight into knowledge building, unlike many existing heuristic black-box
CL approaches. Our analysis illuminates the core mechanisms that underpin the adaptive capabilities
of the LEARN algorithm, fostering a comprehensive understanding of its inner workings.

In summary, Propositions 3.1 and 3.2 address Questions 2.1 and 2.2, respectively. LEARN effectively
adapts to previously learned tasks and refines its knowledge base, exhibiting key aspects of human
learning and making it suitable for various real-world applications. However, Algorithm 1 may not
be scalable for large-scale deep learning tasks due to its requirement for density integration. To tackle
this, the following subsection introduces an approximation of LEARN that employs an efficient
approximation method, enhancing its scalability and compatibility with deep learning applications,
thereby extending its applicability.

3.3 Scalable implementation
In the previous subsection, we introduced LEARN in Algorithm 1 and provided theoretical guarantees.
However, this approach faces scalability challenges in large-scale deep learning tasks. To address this
issue, we present Scalable LEARN in Algorithm 2, an efficient approximation using Gaussian Mixture
Models (GMMs). While Variational Inference (VI) [33] is a popular technique for approximating
target distributions in deep learning literature, it is not well-suited for our problem setting due to the
recursive form in Algorithm 1. GMM, on the other hand, offers a more straightforward and effective
solution while preserving the core properties and adaptability of the LEARN algorithm. The detailed
technical derivation is included in Appendix.

Algorithm 2 Scalable LEARN
Input Model classM = {M(·; θ) : θ ∈ Θ}, data {(xt, yt)}Tt=1, mixing {αt}Tt=1, step size

η > 0, variance σ2, patience τ ∈ [0, 1], Q > 0, loss function L : Y × Y 7→ R≥0.
Output Knowledge GT = {(rT,i, βT,i) ∈ [0, 1]×Rd}mT

i=1 of tuples of slow weight and parameter.
1: Initialization: fast learner θ0 ∼ Unif(Θ), predictive weight w0,0 = 1, cache weight r0,0 = 1,

slow learner G0 = ∅, patience q0 = 0.
2: for t = 1→ T do
3: Receive xt and predict ŷt = wt−1,0M(xt; θt−1) +

∑mt−1

i=1 wt−1,iM(xt;βt−1,i).
4: Receive yt and corresponding loss lt(θ) ≜ L(M(xt; θ), yt).
5: Exploration of fast learner: θt ← θt−1 − ησ2∇lt(θt−1).
6: Exploration and knowledge recall for adaptation, and then normalize wt,i:

wt,i ← {(1− α)wt−1,i + αrt−1,i} exp{−ηlt(βt−1,i)}, (i = 0, . . . ,mt−1, βt−1,0 ≜ θt−1)

7: Refinement of knowledge: for i ∈ [mt−1]

rt,i ← rt−1,i −
1

t
(rt−1,i − wt,i), βt,i ← βt−1,i − ησ2 wt,i

trt,i
∇lt(βt−1,i).

8: Update patience: qt ← qt−1 +max{0, wt,0 − τ}
9: if patience qt > Q then

10: Consolidate knowledge with cache, and initialize cache:
Gt ← Gt−1 ∪ {(rt,0, θt)}. qt = rt,0 = 0

In Algorithm 1, we focus on two densities: the fast learner f̃t and the slow learner gt. Assume there
are mt Gaussian models,N (βt,i, σ

2Id), constituting our knowledge base, and an additional Gaussian
model, N (θt, σ

2Id), for exploration. We approximate the fast and slow learner as the weighted
averages of these mt + 1 Gaussian models: (βt,0 ≜ θt)

f̃t(θ) ≈
mt∑
i=0

wt,iN (βt,i, σ
2Id), gt(θ) ≈

mt∑
i=0

rt,iN (βt,i, σ
2Id),

where {wt,i}mt
i=1 denote predictive mixing weights, {rt,i}mt

i=1 represent slow weights, and wt,0 and
rt,0 denote the cache weights to be consolidated. For simplicity, we only consider the first-order
Taylor expansion of loss lt, implying that the variance σ2 remains unchanged. By substituting the
approximation into the update rules in Algorithm 1, we obtain the weights update stated in Algorithm
2, and updates for θt and βt,i as:

θt+1 ← θt − ησ2∇lt+1(θt), βt+1,i ← βt,i − ησ2 wt+1,i∑t+1
τ=1 wτ,i

∇lt+1(βt,i).
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In Algorithm 2, the fast learner is first updated using gradient descent (Line 5). After this update,
predictive weights facilitate swift adaptation to prior tasks by recalling knowledge and exploring; this
is achieved by mixing with slow weights and multiplying by their corresponding performances in
Line 6. This process ensures that the agent remains responsive to new information.

In the context of knowledge consolidation, slow weights are first updated in Line 7. New information
is selectively consolidated into the knowledge by applying gradient descent with varying step sizes
(Line 7). These step sizes are determined by the relevance to the current data, namely the ratio of the
predictive weight to the sum of historical predictive weights. This method enables the knowledge to
refine by absorbing different amounts of current data while preventing forgetting.

In order to detect new modes, we monitor the patience, which is the sum of cache predictive weights
max{wt,0 − τ, 0} (Lines 8 to 10). When the patience surpasses a predetermined threshold Q, the
current cache weight and fast learner are consolidated into the slow learner as a new component. This
step ensures that the algorithm effectively responds to any new modes.

4 Experimental evaluation

We conduct extensive experiments to evaluate the performance, the ability to adapt to learned tasks,
and the knowledge quality. Recall that an Adaptive CL scenario consists of a data stream from an
online, non-stationary environment with potentially recurring tasks and unknown task boundaries or
identities. To emphasize the challenge of the problem, we create multiple tasks with distinct original
labels, which are then re-labeled within the same label region–otherwise, the task boundaries and
identity could be inferred directly from the labels. In the following experiments, each data point is
presented only once with batch size 5.

Datasets. CIFAR10 [51] consists of color images in 10 classes, with 6000 images per class. We create
5 tasks from CIFAR10 by splitting the dataset into 5 subsets according to labels (0/1, 2/3, . . . , 8/9),
and then convert the labels in the region of 0/1 by taking modulus with respect to 2, which brings the
challenges of inferring task boundaries and identities. Each task is randomly split into 20 segments
with 500 data per segment. By shuffling and combining all the 100 segments, we obtain the Adaptive
CIFAR10 scenario. CIFAR100 [51] consists of color images in 100 classes containing 600 images
each. Like before, we create 10 tasks from CIFAR100 by splitting it according to labels so that there
are 10 classes per task. We then obtain the Adaptive CIFAR100 scenario with 10 segments per task,
in a way similar to CIFAR10. Mini-ImageNet [52] contains 100 classes, and we obtain the Adaptive
Mini-ImageNet scenario similar to the Adaptive CIFAR100.

Table 1: Comparison of Average Accuracy (%) (mean
± se) from 10 runs.

Method CIFAR10 CIFAR100 Mini-ImageNet

Oracle* 79.90± 0.06 37.45± 0.10 31.69± 0.11
ExpVAE* 72.69± 0.14 17.61± 0.14 12.93± 1.08

Finetune 73.58± 0.11 26.89± 0.32 22.35± 0.03
ER 75.22± 0.10 28.53± 0.39 24.81± 0.09
A-GEM 72.92± 0.11 26.04± 0.45 22.00± 0.07

LEARN 79.11± 0.11 33.46± 0.28 27.16± 0.25

Compared methods. Except for our
method, LEARN, we further evaluate the
following methods, where * indicates unre-
alistic baselines: 1) Finetune with a neural
network naively trained on the new data. 2)
Oracle* as the performance upper bound
consisting of multiple models, where one
corresponds to one task, with known task
identities during training and testing. 3)
ExpVAE* (Expansion+VAE) consisting of
(classifier, generator) tuples which is popu-
lar in dynamic expansion with mixture mod-
els in Task-free CL [10, 13, 30]. We assume the task identity is known during training. However,
during the prediction stage, the task identity must be inferred by the generators, Variational Autoen-
coder (VAE) [53]. 4) ER (Experience Replay) [54] with reservoir sampling [55] guaranteeing the past
data uniformly stored in the buffer. When training on a new batch, a replayed batch sampled from
the buffer is combined with the new batch, implicitly alleviating forgetting. 5) A-GEM (Averaged
Gradient Episodic Memory) [18] which stores samples in memory, and projects the gradient on
current data onto the orthogonal space of the one on replayed data. The implementation details such
as network architecture and hyperparameters are included in Appendix.

Metrics. We consider three metrics: 1) Average Accuracy: the cumulative accuracy divided by the
total time. 2) Knowledge Accuracy: the mean of test accuracy over all tasks. 3) Adaptiveness:
the weighted average of accuracy, where the weights decay geometrically with factor γ ∈ [0, 1] and
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Figure 2: The running average accuracy of all compared methods on the three Adaptive scenarios
from 10 runs. The dashed line indicates non-Adaptive CL methods with task identity information.

reinitialize whenever the task changes, detailed in Appendix. Larger adaptiveness means a faster
speed to recall related information.

Table 2: Comparisons of Knowledge Accuracy (%)
(mean ± se) from 10 runs.

Method CIFAR10 CIFAR100 Mini-ImageNet

Oracle* 82.64± 2.98 44.55± 1.29 39.42± 1.40
ExpVAE* 82.40± 3.03 44.21± 1.32 39.71± 1.35

Finetune 60.65± 2.78 12.11± 1.57 14.32± 2.05
ER 74.47± 2.47 18.27± 1.43 16.49± 2.14
A-GEM 58.34± 2.97 12.08± 1.55 14.29± 2.06

LEARN 78.08± 2.53 29.28± 2.91 29.28± 1.53

Results. As illustrated in Figure 2 and
Table 1, the average accuracy of LEARN
markedly surpasses that of competing meth-
ods across all scenarios. Amongst the meth-
ods, ER is a simple but strong comparator.
Although ExpVAE utilizes the information
of task identities in training, the dependency
on VAE to recognize current task in the test
stage significantly harm the performance
due to the complexity of training VAE. In-
terestingly, as seen in Figure 2, LEARN
outperforms Oracle in the initial stage be-
cause each model is trained separately, without knowledge transfer during initialization.

Table 3: Comparison of Adaptiveness (mean±se) with
γ = 0.99 from 10 runs in 10−2 scale.

Method CIFAR10 CIFAR100 Mini-ImageNet

Oracle* 79.75± 0.06 37.05± 0.09 31.54± 0.11
ExpVAE* 72.76± 0.16 17.36± 0.13 12.90± 1.07

Finetune 72.62± 0.11 24.90± 0.30 21.07± 0.02
ER 74.64± 0.11 26.87± 0.36 23.62± 0.09
A-GEM 71.86± 0.13 24.11± 0.41 20.72± 0.07

LEARN 78.04± 0.14 31.81± 0.32 26.18± 0.26

Table 2 measures the mean of the test ac-
curacy over all tasks, representing the qual-
ity of knowledge refinement. The refined
knowledge in LEARN, namely a mixture of
models, is significantly better than compet-
ing methods. Table 3 measures the Adap-
tiveness, defined in Metrics, As shown in
the table, LEARN has the largest adaptive-
ness, showing the ability to adapt to learned
tasks more efficiently. It is worth noting
that the competing CL approaches in the
literature were not designed and optimized
for the Adaptive CL scenario, leading to
less satisfactory performance. A more comprehensive discussion of the experimental results will be
provided in the Appendix.

5 Conclusion
In this work, we proposed a realistic and challenging problem, Adaptive CL, and two mathematically
defined characteristics: performance and knowledge quality. To address the problem, we propose a
unified LEARN algorithm that simultaneously recognizes the current task, recalls related information,
and refines knowledge. The theoretical analysis of LEARN guarantees near-optimal performance
and asymptotically consistent knowledge. To be efficient in deep learning, we propose a scalable
implementation. Experimental results show that LEARN significantly surpasses the baseline methods
in multiple aspects. The Appendix contains additional details on the implementation details, more
extensive ablation studies, and all the technical proofs. We do not envision any negative social impact
of the developed approach.

Limitations: While our work provides a theoretical foundation, there are several limitations worth
further investigation. Future studies could 1) examine more efficient ways to recall learned knowledge
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such as context-dependent mixing weight, 2) investigate the second-order expansion of the loss lt
and updatable variance in deriving Algorithm 2, and 3) extend the current supervised settings to
semi-supervised, unsupervised, and reinforcement settings.
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