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Provable Identifiability of Two-Layer ReLU Neural
Networks via LASSO Regularization

Gen Li, Ganghua Wang, Jie Ding

Abstract—LASSO regularization is a popular regression tool
to enhance the prediction accuracy of statistical models by
performing variable selection through the `1 penalty, initially
formulated for the linear model and its variants. In this paper,
the territory of LASSO is extended to two-layer ReLU neural
networks, a fashionable and powerful nonlinear regression model.
Specifically, given a neural network whose output y depends only
on a small subset of input x, denoted by S?, we prove that the
LASSO estimator can stably reconstruct the neural network and
identify S? when the number of samples scales logarithmically
with the input dimension. This challenging regime has been well
understood for linear models while barely studied for neural
networks. Our theory lies in an extended Restricted Isometry
Property (RIP)-based analysis framework for two-layer ReLU
neural networks, which may be of independent interest to other
LASSO or neural network settings. Based on the result, we
advocate a neural network-based variable selection method. Ex-
periments on simulated and real-world datasets show promising
performance of the variable selection approach compared with
existing techniques.

Index Terms—Lasso, Identifiability, Neural network, Nonlinear
regression, Variable selection.

I. INTRODUCTION

Given n observations (yi,xi), i = 1, . . . , n, we often model
them with the regression form of yi = f(xi) + ξi, with
an unknown function f , xi ∈ Rp being the input variables,
and ξi representing statistical errors. A general goal is to
estimate a regression function f̂n close to f for prediction
or interpretation. This is a challenging problem when the
input dimension p is comparable or even much larger than the
data size n. For linear regressions, namely f(x) = w>x, the
least absolute shrinkage and selection operator (LASSO) [1]
regularization has been established as a standard tool to estimate
f . The LASSO has also been successfully used and studied in
many nonlinear models such as generalized linear models [2],
proportional hazards models [3], and neural networks [4].
For LASSO-regularized neural networks, existing works have
studied different properties, such as convergence of training [5],
model pruning [6], [7], and feature selection [8], [9]. The
LASSO regularization has also been added into the standard
deep learning toolbox of many open-source libraries, e.g.,
Tensorflow [10] and Pytorch [11].

Despite the practical success of LASSO in improving the
generalizability and sparsification of neural networks, whether
one can use LASSO for identifying significant variables
is underexplored. For linear models, the variable selection
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problem is also known as support recovery or feature selection
in different literature. Selection consistency requires that the
probability of supp(ŵ) = supp(w) converges to one as
n → ∞. The standard approach to selecting a parsimonious
sub-model is to either solve a penalized regression problem
or iteratively pick up significant variables [12]. The existing
methods differ in how they incorporate unique domain knowl-
edge (e.g., sparsity, multicollinearity, group behavior) or what
desired properties (e.g., consistency in coefficient estimation,
consistency in variable selection) to achieve [13]. For instance,
consistency of the LASSO method [1] in estimating the
significant variables has been extensively studied under various
technical conditions, including sparsity, mutual coherence [14],
restricted isometry [15], irrepresentable condition [16], and
restricted eigenvalue [17].

Many theoretical studies of neural networks have focused
on the generalizability. For example, a universal approximation
theorem was established that shows any continuous multivariate
function can be represented precisely by a polynomial-sized
two-layer network [18]. It was later shown that any continuous
function could be approximated arbitrarily well by a two-
layer perceptron with sigmoid activation functions [19], and an
approximation error bound of using two-layer neural networks
to fit arbitrary smooth functions has been established [20],
[21]. Statistically, generalization error bounds for two-layer
neural networks [21], [22] and multi-layer networks [23]–[25]
have been developed. From an optimization perspective, the
parameter estimation of neural networks was cast into a tensor
decomposition problem where a provably global optimum
can be obtained [26]–[28]. Very recently, a dimension-free
Rademacher complexity to bound the generalization error for
deep ReLU neural networks was developed to avoid the curse
of dimensionality [29]. It was proved that certain deep neural
networks with few nonzero network parameters could achieve
minimax rates of convergence [30]. A tight error bound free
from the input dimension was developed by assuming that the
data is generated from a generalized hierarchical interaction
model [31].

This work theoretically studies the identifiability of neural
networks and uses it for variable selection. Specifically, suppose
data observations are generated from a neural network with
only a few nonzero coefficients. The identifiability concerns
the possibility of identifying those coefficients, which may be
further used to identify a sparse set of input variables that are
genuinely relevant to the response. In this direction, LASSO
and its variant Group LASSO [32] have been advocated to
regularize neural-network for variable selection in practice (see,
e.g., [6], [8], [9], [33]).
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In this paper, we consider the following class of two-layer
ReLU neural networks for regression.

Fr =

{
f : x 7→ f(x) =

r∑
j=1

ajrelu(w>j x+ bj),

where aj , bj ∈ R,wj ∈ Rp
}
.

Here, p and r denote the input dimension and the number of
neurons, respectively. We will assume that data are generated
from a regression function in Fr perturbed by a small term.
We will study the following two questions.

First, if the underlying regression function f admits a
parsimonious representation so that only a small set of input
variables, S?, is relevant, can we identify them with high
probability given possibly noisy measurements (yi,xi), for
i = 1, . . . , n? Second, is such an S? estimable, meaning that
it can be solved from an optimization problem with high
probability, even in small-n and large-p regimes?

To address the above questions, we will establish a theory for
neural networks with the LASSO regularization by considering
the problem minW ,a,b ‖W ‖1 under the constraint of

1

n

n∑
i=1

(
yi −

r∑
j=1

ajrelu(w>j xi + bj)

)2

≤ σ2,

which is an alternative version of the `1-regularization. More
notational details will be introduced in Subsection II-B.

Our theory gives positive answers to the above questions. We
theoretically show that the LASSO-type estimator can stably
identify ReLU neural networks with sparse input signals, up to
a permutation of hidden neurons. We only focus on the varying
n and p and implicitly assume that the sparsity of W ? and the
number of neurons r are fixed. While this does not address wide
neural networks, we think it still corresponds to a nontrivial
and interesting function class. For example, the class contains
linear functions when input signals are bounded. Our result
is rather general as it applies to noisy observations of y and
dimension regimes where the sample size n is much smaller
than the number of input variables p. The theory was derived
based on new concentration bounds and function analysis that
may be interesting in their own right.

Inspired by the developed theory, we also propose a neural
network-based variable selection method. The idea is to use the
neural system as a vehicle to model nonlinearity and extract
significant variables. Through various experimental studies, we
show encouraging performance of the technique in identifying
a sparse set of significant variables from large dimensional data,
even if the underlying data are not generated from a neural
network. Compared with popular approaches based on tree
ensembles and linear-LASSO, the developed method is suitable
for variable selection from nonlinear, large-dimensional, and
low-noise systems.

The rest of the paper is outlined as follows. Section II
introduces the main theoretical result and proposes an algorithm
to perform variable selection. Section III uses simulated and
real-world datasets to demonstrate the proposed theory and
algorithm. Section IV concludes the paper.

II. MAIN RESULT

A. Notation

Let uS denote the vector whose entries indexed in the set
S remain the same as those in u, and the remaining entries
are zero. For any matrix W ∈ Rp×r, we define

‖W ‖1 =
∑

1≤k≤p,1≤j≤r

|wkj |, ‖W ‖F =

( ∑
1≤k≤p,1≤j≤r

w2
kj

)1/2

.

Similar notations apply to vectors. The inner product of two
vectors is denoted as 〈u,v〉. Let wj denote the j-th column
of W . The sparsity of a matrix W refers to the number of
nonzero entries in W . Let N (0, Ip) denote the standard p-
dimensional Gaussian distribution, and 1(·) denote the indicator
function. The rectified linear unit (ReLU) function is defined
by relu(v) = max{v, 0} for all v ∈ R.

B. Formulation

Consider n independently and identically distributed (i.i.d.)
observations {xi, yi}1≤i≤n satisfying

yi =

r∑
j=1

a?j · relu(w?>
j xi + b?j ) + ξi (1)

with xi ∼ N (0, Ip), where r is the number of neurons, a?j ∈
{1,−1}, w?

j ∈ Rp, b?j ∈ R, and ξi denotes the random noise
or approximation error obeying

1

n

n∑
i=1

ξ2i ≤ σ2. (2)

In the above formulation, the assumption a?j ∈ {1,−1} does
not lose generality since a · relu(b) = ac · relu(b/c) for any
c > 0. The setting of Inequality (2) is for simplicity. If
ξi’s are unbounded random variables, the theoretical result
to be introduced will still hold, with more explanations in the
Appendix. The ξi’s are not necessarily i.i.d., and σ is allowed
to be zero, which reduces to the noiseless scenario.

Let W ? = [w?
1 , . . . ,w

?
r ] ∈ Rp×r denote the data-generating

coefficients. The main problem to address is whether one can
stably identify those nonzero elements, given that most entries
in W ? are zero. The study of neural networks from an iden-
tifiability perspective is essential. Unlike the generalizability
problem that studies the predictive performance of machine
learning models, the identifiability may be used to interpret
modeling results and help scientists make trustworthy decisions.
To illustrate this point, we will propose to use neural networks
for variable selection in Subsection II-E.

To answer the above questions, we propose to study the
following LASSO-type optimization. Let

(
Ŵ , â, b̂

)
be a

solution to the following optimization problem,

min
W ,a,b

‖W ‖1 (3)

subject to
1

n

n∑
i=1

(
yi −

r∑
j=1

aj · relu(w>j xi + bj)

)2

≤ σ2,

within the feasible range a ∈ {1,−1}r, W ∈ Rp×r, and b ∈
Rr. Intuitively, the optimization operates under the constraint
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that the training error is not too large, and the objective function
tends to sparsify W . Under some regularity conditions, we
will prove that the solution is indeed sparse and close to the
data-generating process.

C. Main result

We make the following technical assumption.

Assumption 1. For some constant B ≥ 1,

1 ≤ ‖w?
j ‖2 ≤ B and |b?j | ≤ B ∀1 ≤ j ≤ r. (4)

In addition, for some constant ω > 0,

max
j,k=1,...,r,j 6=k

∣∣〈w?
j ,w

?
k〉
∣∣

‖w?
j ‖2‖w?

k‖2
≤ 1

rω
. (5)

Remark 1 (Discussion of Assumption 1). The condition in
(4) is a normalization only for technical convenience, since
we can re-scale wj , bj , yi, σ proportionally without loss of
generality. Though this condition implicitly requires w?

j 6= 0
for all j = 1, . . . , r, it is reasonable since it means the neuron
j is not used/activated. The condition in (5) requires that the
angle of any two different coefficient vectors is not too small.
This condition is analogous to a bounded-eigenvalue condition
often assumed for linear regression problems, where each w?j
is understood as a column in the design matrix. This condition
is by no means mild or easy to verify in practice. Nevertheless,
as our focused regime is large p, n but small r, we think the
condition in (5) is still reasonable. For example, when r = 2,
this condition simply requires w?1 6= w?2 .

Our main result shows that if W ? is sparse, one can stably
reconstruct a neural network when the number of samples
(n) scales logarithmically with the input dimension (p). A
skeptical reader may ask how the constants exactly depend on
the sparsity and r. We will provide a more elaborated result
in Subsection II-D and introduce the proof there.

Theorem 1. Under Assumption 1, there exist some constants
c1, c2, c3 > 0 depending only (polynomially) on the sparsity
of W ? such that for any δ > 0, one has with probability at
least 1− δ,

â = Πa? and ‖Ŵ −W ?Π>‖F + ‖b̂−Πb?‖2 ≤ c1σ (6)

for some permutation matrix Π, provided that

n > c2 log4 p

δ
and σ < c3. (7)

Remark 2 (Interpretation of Theorem 1). The permutation
matrix Π is necessary since the considered neural networks
produce identical predictive distributions (of y conditional x)
under any permutation of the hidden neurons. The result states
that the underlying neural coefficients can be stably estimated
even when the sample size n is much smaller than the number
of variables p. Also, the estimation error bound is at the order
of σ, the specified noise level in (2).

Suppose that we define the signal-to-noise ratio (SNR) to be
E‖x‖2/σ2. An alternative way to interpret the theorem is that
a large SNR ensures the global minimizer to be close to the
ground truth with high probability. One may wonder what if

the σ < c3 condition is not met. We note that if σ is too large,
the error bound in (6) would be loose, and it is not of much
interest anyway. In other words, if the SNR is small, we may
not be able to estimate parameters stably. This point will be
demonstrated by experimental studies in Section III.

The estimation results in Theorem 1 can be translated into
variable selection results as shown in the following Corollary 1.
The connection is based on the fact that if i-th variable is
redundant, the underlying coefficients associated with it should
be zero. Let w?

i,· denote the i-th row of W ?. Then,

S? = {1 ≤ i ≤ p : ‖w?
i,·‖2 > 0}

characterizes the “significant variables.” Corollary 1 states that
the set of variables with non-vanished coefficient estimates
contains all the significant variables. The corollary also shows
that with a suitable shrinkage of the coefficient estimates, one
can achieve variable selection consistency.

Corollary 1 (Variable selection). Let Ŝc1σ ⊆ {1, . . . , p} denote
the sets of i’s such that ‖ŵi,·‖2 > c1σ. Under the same
assumption as in Theorem 1, and min1≤i≤r‖w?

i,·‖2 > 2c1σ,
for any δ > 0, one has

P(S? = Ŝc1σ) ≥ 1− δ,

provided that n > c2 log4 p
δ and σ < c3.

Considering the noiseless scenario σ = 0, Theorem 1 also
implies the following corollary.

Corollary 2 (Unique parsimonious representation). Under the
same assumption as in Theorem 1, there exists a constant
c2 > 0 depending only on the sparsity of W ? such that for
any δ > 0, one has with probability at least 1− δ,

â = Πa?, Ŵ = W ?Π>, and b̂ = Πb?

for some permutation matrix Π, provided that n > c2 log4 p
δ .

Corollary 2 states that among all the possible representations
W in (1) (with ξi = 0), the one(s) with the smallest `1-
norm must be identical to W ? up to a column permutation
with high probability. In other words, the most parsimonious
representation (in the sense of `1 norm) of two-layer ReLU
neural networks is unique. This observation addresses the
questions raised in Section I.

It is worth mentioning that since the weight matrix W of
the neural network is row-sparse, Group-LASSO is a suitable
alternative to LASSO. We leave the analysis of Group-LASSO
for future study.

D. Elaboration on the main result

Suppose that W ? has at most s nonzero entries. The
following theorem is a more elaborated version of Theorem 1.

Theorem 2. There exist some constants c1, c2, c3 > 0 such
that for any δ > 0, one has with probability at least 1− δ,

â = Πa? and ‖Ŵ −W ?Π>‖F + ‖b̂−Πb?‖2 ≤ c1σ (8)
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for some permutation Π ∈ {0, 1}r×r, provided that Assump-
tion 1 holds and

n > c2s
3r13 log4 p

δ
and σ <

c3
r
. (9)

Remark 3 (Sketch proof of Theorem 1). The proof of
Theorem 1 is nontrivial and is included in the Appendix. Next,
we briefly explain the sketch of the proof. First, we will define
what we refer to as D1-distance and D2-distance between
(W ,a, b) and (W ?,a?, b?). These distances can be regarded
as the counterpart of the classical `1 and `2 distances between
two vectors, but allowing the invariance under any permutation
of neurons (Remark 2). Then, we let

∆n :=
1

n

n∑
i=1

[ r∑
j=1

ajrelu(w>j xi + bj)

−
r∑
j=1

a?j relu(w?>
j xi + b?j )

]2
,

where (W ,a, b) is the solution of the problem in (3), and
develop the following upper and lower bounds of it:

∆n ≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2 and

∆n ≥ c4 min

{
1

r
,D2

2

}
(10)

hold with probability at least 1 − δ, provided that n ≥
c5S

3r4 log4 p
δ , for some constants c4, c5, c6, and S to be

specified. Here, the upper bound will be derived from a series
of elementary inequalities. The lower bound is reminiscent of
the Restricted Isometry Property (RIP) [15] for linear models.
We will derive it from the lower bound of the population
counterpart by concentration arguments, namely

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥ cmin

{
1

r
,D2

2

}
,

for some constant c > 0. The bounds in (10) imply that with
high probability,

c4 min

{
1

r
,D2

2

}
≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

Using this and an inequality connecting D1 and D2, we can
prove the final result.

Remark 4 (Alternative assumption and result). We provide an
alternative to Theorem 2. Consider the following Assumption 1’
as an alternative to Assumption 1.
Assumption 1’. For some constant B > 0,

‖w?
j ‖2 ≤ B and |b?j | ≤ B for all 1 ≤ j ≤ r.

In addition,

E
[
〈a, relu(W>x+ b)〉 − 〈a?, relu(W ?>x+ b?)〉

]2
≥ ψD2 [(W ,a, b), (W ?,a?, b?)]

2
, (11)

and

n >
c2
ψ
s3r3 log4 p

δ
. (12)

With Assumption 1’ instead of Assumption 1, one can
still derive the same result as Theorem 2. The proof of the
above result is similar to that of Theorem 2, except that we
insert Inequality (11) instead of Inequality (22) into (21) in
Appendix A.

E. Variable selection

To solve the optimization problem (3) in practice, we
consider the following alternative problem,

min
W∈Rp×r,a∈Rr,b∈Rr

{
1

n

n∑
i=1

(
yi −

r∑
j=1

aj · relu(w>j xi + bj)

)2

+ λ‖W ‖1
}
. (13)

It has been empirically shown that algorithms such as the
stochastic gradient descent can find a good approximate solution
to the above optimization problem [34], [35]. Next, we will
discuss some details regarding the variable selection using
LASSO-regularized neural networks.

Tuning parameters. Given a labeled dataset in practice, we
will need to tune hyper-parameters including the penalty term
λ, the number of neurons r, learning rate, and the number of
epochs. We suggest the usual approach that splits the available
data into training and validation parts. The training data are
used to estimate neural networks for a set of candidate hyper-
parameters. The most suitable candidate will be identified based
on the predictive performance on the validation data.

Variable importance. Inspired by Corollary 1, we interpret
the `2-norm of ŵi,· as the importance of the i-th variable,
for i = 1, . . . , p. Corollary 1 indicates that we can accurately
identify all the significant variables in S? with high probability
if we correctly set the cutoff value c1σ.

Setting the cutoff value. It is conceivable that variables
with large importance are preferred over those with near-
zero importance. This inspires us to cluster the variables into
two groups based on their importance. Here, we suggest two
possible approaches. The first is to use a data-driven approach
such as k-means and Gaussian mixture model (GMM). The
second is to manually set a threshold value according to domain
knowledge on the number of important variables.

Extension to deep neural networks. Inspired by (13), we
can intuitively generalize the proposed method to deep neural
networks by penalizing the `1-norm of the weight matrix in
the input layer. Though we do not have a theoretical analysis
for this broader setting, numerical studies show that it is still
effective.

III. EXPERIMENTS

We perform experimental studies to show the promising per-
formance of the proposed variable selection method. We com-
pare the variable selection accuracy and prediction performance
of the proposed algorithm (‘NN’) with several baseline methods,
including LASSO (‘LASSO’), orthogonal matching pursuit
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(‘OMP’), random forest (‘RF’), gradient boosting (‘GB’), neural
networks with group LASSO (‘GLASSO’) [5], group sparse
regularization (‘GSR’) [8], and LNET (‘LNET’) [9]. The
‘NN’ hyperparameters to search over are the penalty term
λ ∈ {0.1, 0.05, 0.01, 0.005, 0.001}, the number of neurons
r ∈ {20, 50, 100}, the learning rate in {0.01, 0.005, 0.001},
and the number of epochs in {100, 200, 500}. Moreover, we
extend ‘NN’ to a neural network that contains an additional
hidden layer of ten neurons. We distinguish the proposed
method with two-layer and three-layer neural networks by
‘NN-2’ and ‘NN-3’, respectively. Further experimental details
are included in Appendix E.

A. Synthetic datasets

1) NN-generated dataset: The first experiment uses the
data generated from Equation (1) with p = 100 variables,
r = 16 neurons. The first 10 rows of neural coefficients W are
independently generated from the standard uniform distribution,
and the remaining rows are zeros, representing 10 significant
variables. The neural biases b are also generated from the
standard uniform distribution. The signs of neurons, a, follow
an independent Bernoulli distribution. The training size is
n = 500, and the test size is 2000. The noise is zero-mean
Gaussian with standard deviation σ set to be 0, 0.5, 1, and
5. For each σ, we evaluate its mean squared error on the test
dataset and three quantities for variable selection: the number
of correctly selected variables (‘TP’, the larger the better),
wrongly selected variables (‘FP’, the smaller the better), and
area-under-curve score (‘AUC’, the larger the better). Here,
‘AUC’ is evaluated based on the variable importance given by
each method, which is detailed in Appendix E. The procedure
is independently replicated 20 times.

The results are reported in Table I and Table II, which
suggest that ‘NN’ has the best overall performance for both
selection and prediction. In particular, ‘NN-2’ and ‘NN-3’
have almost the same performance among all situations, which
empirically demonstrates that the proposed method also works
for deeper neural networks. It is interesting to compare ‘NN’
with ‘LNET’: ‘NN’ has slightly higher test error than ‘LNET’
when the noise level is small, but a much smaller false positive
rate and higher AUC score than ‘LNET’. It indicates that ‘NN’
is more accurate for variable selection, while ‘LNET’ tends to
over-select variables for better prediction accuracy. Also, all
the methods perform worse as the noise level σ increases.

2) Linear dataset: This experiment considers data gen-
erated from a linear model y = x>β + ξ, where β =
(3, 1.5, 0, 0, 2, 0, 0, 0)>, ξ ∼ N (0, σ2), and x follows a
multivariate Gaussian distribution whose (i, j)-th correlation
is 0.5|i−j|. Among the p = 8 features, only three of them are
significant. The training size is n = 60, and the test size is
200. The other settings are the same as Subsubsection III-A1.
The results are presented in Tables III and IV.

The results show that the linear model-based methods
‘LASSO’ and ‘OMP’ have the best overall performance, which
is expected since the underlying data are from a linear model.
The proposed ‘NN’ approach is almost as good as the linear
methods. Note that ‘NN-3’ outperforms ‘NN-2’ in this case.

TABLE I
PERFORMANCE COMPARISON ON THE NN-GENERATED DATA, IN TERMS OF

THE NUMBER OF CORRECTLY (‘TP’), WRONGLY (‘FP’) SELECTED
FEATURES, AND THE AUC SCORE FOR DIFFERENT σ. THE STANDARD

ERRORS ARE WITHIN THE PARENTHESES.

Method Metric σ = 0 σ = 0.5 σ = 1 σ = 5

LASSO TP 8.30 (2.57) 9.10 (1.22) 9.20 (1.03) 6.70 (3.68)
FP 10.40 (6.99) 10.70 (6.09) 13.35 (6.17) 8.60 (8.13)

AUC 0.96 (0.06) 0.96 (0.05) 0.96 (0.05) 0.87 (0.14)
OMP TP 8.45 (1.53) 8.30 (1.35) 8.00 (2.17) 6.00 (2.12)

FP 0.10 (0.30) 0.15 (0.36) 0.25 (0.70) 0.65 (1.06)
AUC 0.92 (0.08) 0.91 (0.07) 0.91 (0.09) 0.80 (0.11)

RF TP 6.95 (3.12) 5.55 (3.29) 5.75 (3.27) 4.20 (2.60)
FP 0.45 (0.67) 0.40 (0.66) 0.35 (0.57) 1.20 (2.18)

AUC 0.99 (0.02) 0.97 (0.03) 0.95 (0.04) 0.86 (0.12)
GB TP 6.85 (2.97) 7.15 (3.09) 5.75 (3.69) 5.65 (3.20)

FP 1.35 (1.46) 1.60 (1.91) 2.10 (2.07) 5.20 (6.69)
AUC 0.98 (0.02) 0.97 (0.03) 0.97 (0.03) 0.88 (0.11)

GLASSO TP 9.35 (1.42) 9.80 (0.51) 9.45 (0.59) 6.35 (2.22)
FP 0.10 (0.44) 0.65 (0.96) 1.00 (1.38) 8.50 (11.45)

AUC 1.00 (0.00) 1.00 (0.00) 0.99 (0.02) 0.84 (0.14)
GSR TP 9.55 (1.96) 10.00 (0.00) 9.90 (0.30) 7.90 (2.81)

FP 1.25 (2.05) 0.70 (1.19) 1.35 (2.26) 22.45 (29.67)
AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 0.84 (0.18)

LNET TP 10.00 (0.00) 10.00 (0.00) 9.95 (0.22) 5.10 (2.91)
FP 66.40 (11.15) 59.00 (14.64) 41.60 (21.62) 8.05 (14.41)

AUC 0.63 (0.06) 0.67 (0.08) 0.77 (0.12) 0.83 (0.12)
NN-2 TP 10.00 (0.00) 9.85 (0.36) 9.80 (0.51) 7.80 (1.96)

FP 0.75 (1.13) 1.25 (2.09) 2.55 (5.80) 12.30 (10.57)
AUC 1.00 (0.00) 1.00 (0.01) 1.00 (0.01) 0.88 (0.13)

NN-3 TP 9.75 (0.16) 9.85 (0.08) 9.10 (0.45) 6.95 (0.44)
FP 0.75 (0.34) 0.65 (0.26) 0.45 (0.18) 2.50 (0.73)

AUC 1.00 (0.00) 1.00 (0.00) 0.99 (0.00) 0.85 (0.03)

TABLE II
PERFORMANCE COMPARISON ON THE NN-GENERATED DATA, IN TERMS OF

THE AVERAGE MEAN SQUARED ERROR FOR DIFFERENT σ.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

LASSO 5.15 (0.64) 6.49 (1.08) 4.25 (0.49) 7.42 (0.79)
OMP 5.08 (0.72) 6.35 (1.06) 5.48 (1.14) 6.41 (0.63)
RF 12.62 (2.57) 7.07 (1.34) 9.89 (2.19) 15.94 (3.60)
GB 8.19 (2.20) 4.06 (0.70) 7.08 (1.17) 10.60 (1.56)
GLASSO 1.09 (0.06) 1.19 (0.07) 1.79 (0.08) 9.14 (0.32)
GSR 0.57 (0.03) 0.64 (0.04) 0.95 (0.04) 5.43 (0.37)
LNET 0.51 (0.02) 0.63 (0.02) 0.99 (0.03) 5.10 (0.34)
NN-2 0.67 (0.04) 0.74 (0.04) 1.06 (0.05) 3.91 (0.22)
NN-3 0.62 (0.03) 0.77 (0.04) 0.87 (0.04) 4.05 (0.25)

One possible explanation is that deeper neural networks have
much larger expressivity than two-layer networks. On the
other hand, the tree-based methods ‘RF’ and ‘GB’ perform
significantly worse. This is possibly because the sample size
n = 60 is relatively small, so the tree-based methods have
a large variance. Meanwhile, the ‘NN’ uses the `1 penalty
to alleviate the over-parameterization and consequently spots
the relevant variables. Additionally, ‘NN’ exhibits a positive
association between the selection accuracy and prediction
performance, while the tree-based methods do not.

3) Friedman dataset: This experiment uses the Friedman
dataset with the following nonlinear data-generating process,
y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ξ. We
generate standard Gaussian predictors x with a dimension of
p = 50. The training size is n = 500 and the test size is
2000. Other settings are the same as before. The results are
summarized in Tables V and VI. For this nonlinear dataset, ‘NN’
and ‘GB’ accurately find the significant variables and exclude
redundant ones, while the linear methods fail to select the
quadratic factor x3. As for the prediction performance, neural
network-based methods outperform other methods. In particular,
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TABLE III
PERFORMANCE COMPARISON ON THE LINEAR DATA, IN TERMS OF THE

NUMBER OF CORRECTLY (‘TP’), WRONGLY (‘FP’) SELECTED FEATURES,
AND THE AUC SCORE FOR DIFFERENT σ.

Method σ = 0 σ = 1 σ = 3 σ = 5

LASSO TP 3.00 (0.00) 3.00 (0.00) 2.85 (0.11) 2.05 (0.18)
FP 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.50 (0.19)

AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.90 (0.03)
OMP TP 3.00 (0.00) 2.90 (0.10) 2.95 (0.05) 2.15 (0.18)

FP 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.30 (0.12)
AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.88 (0.03)

RF TP 1.15 (0.08) 1.30 (0.12) 1.25 (0.12) 1.60 (0.16)
FP 0.00 (0.00) 0.00 (0.00) 0.05 (0.05) 0.20 (0.11)

AUC 1.00 (0.00) 0.99 (0.01) 0.99 (0.00) 0.83 (0.03)
GB TP 1.35 (0.16) 1.35 (0.16) 1.30 (0.14) 1.90 (0.20)

FP 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.30 (0.17)
AUC 1.00 (0.00) 0.99 (0.01) 0.99 (0.01) 0.91 (0.02)

GLASSO TP 2.80 (0.13) 2.70 (0.16) 2.40 (0.19) 1.95 (0.18)
FP 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.70 (0.20)

AUC 1.00 (0.00) 1.00 (0.00) 0.99 (0.00) 0.80 (0.04)
GSR TP 2.90 (0.10) 2.90 (0.07) 2.80 (0.13) 1.90 (0.16)

FP 0.00 (0.00) 0.10 (0.10) 0.00 (0.00) 0.55 (0.15)
AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.84 (0.03)

LNET TP 3.00 (0.00) 3.00 (0.00) 2.85 (0.15) 1.70 (0.19)
FP 0.00 (0.00) 0.20 (0.09) 0.95 (0.26) 0.55 (0.23)

AUC 1.00 (0.00) 0.98 (0.01) 0.88 (0.03) 0.80 (0.04)
NN-2 TP 2.50 (0.17) 2.40 (0.17) 2.55 (0.14) 2.25 (0.17)

FP 0.05 (0.05) 0.20 (0.15) 0.25 (0.12) 0.75 (0.18)
AUC 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.89 (0.2)

NN-3 TP 3.00 (0.00) 2.65 (0.15) 2.90 (0.07) 2.10 (0.20)
FP 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.35 (0.15)

AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.92 (0.02)

TABLE IV
PERFORMANCE COMPARISON ON THE LINEAR DATA, IN TERMS OF THE

NUMBER OF AVERAGE MEAN SQUARED ERROR FOR DIFFERENT σ.

Method σ = 0 σ = 1 σ = 3 σ = 5

LASSO 0.00 (0.00) 0.04 (0.01) 0.17 (0.03) 4.09 (0.45)
OMP 0.00 (0.00) 0.02 (0.00) 0.09 (0.01) 4.19 (0.44)
RF 3.57 (0.22) 3.58 (0.21) 3.52 (0.16) 7.89 (0.55)
GB 2.45 (0.15) 3.04 (0.17) 3.01 (0.17) 11.59 (0.81)
GLASSO 0.10 (0.01) 0.21 (0.02) 0.34 (0.03) 4.95 (0.32)
GSR 0.09 (0.01) 0.18 (0.02) 0.30 (0.04) 4.16 (0.34)
LNET 0.18 (0.02) 0.17 (0.02) 0.34 (0.04) 3.70 (0.59)
NN-2 0.09 (0.01) 0.19 (0.02) 0.37 (0.04) 3.96 (1.37)
NN-3 0.03 (0.00) 0.10 (0.02) 0.17 (0.02) 3.17 (0.45)

‘NN’ is better than ‘GLASSO’ and ‘GSR’, while ‘LNET’
exhibits better prediction and worse selection performance
as seen in previous experiments.

B. BGSBoy dataset

The BGSBoy dataset involves 66 boys from the Berkeley
guidance study (BGS) of children born in 1928-29 in Berkeley,
CA [36]. The dataset includes the height (‘HT’), weight (‘WT’),
leg circumference (‘LG’), strength (‘ST’) at different ages (2,
9, 18 years), and body mass index (‘BMI18’). We choose
‘BMI18’ as the response, which is defined as follows.

BMI18 = WT18/(HT18/100)2, (14)

where WT18 and HT18 denote the weight and height at the
age of 18, respectively. In other words, ‘WT18’ and ‘HT18’ are
sufficient for modeling the response among p = 10 variables.
Other variables are correlated but redundant. The training size
is n = 44 and the test size is 22. Other settings are the same

TABLE V
PERFORMANCE COMPARISON ON THE FRIEDMAN DATA, IN TERMS OF THE
NUMBER OF CORRECTLY (‘TP’), WRONGLY (‘FP’) SELECTED FEATURES,

AND THE AUC SCORE FOR DIFFERENT σ.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

LASSO TP 4.05 (0.05) 4.00 (0.00) 4.10 (0.07) 4.00 (0.10)
FP 1.45 (0.47) 1.85 (0.49) 2.00 (0.42) 3.10 (0.61)

AUC 0.91 (0.01) 0.91 (0.01) 0.91 (0.01) 0.90 (0.01)
OMP TP 4.00 (0.00) 4.00 (0.00) 4.00 (0.00) 3.80 (0.15)

FP 0.10 (0.07) 0.10 (0.07) 0.10 (0.07) 0.05 (0.05)
AUC 0.90 (0.00) 0.90 (0.00) 0.90 (0.00) 0.89 (0.01)

RF TP 4.60 (0.27) 4.60 (0.27) 4.80 (0.19) 4.10 (0.29)
FP 0.10 (0.07) 0.00 (0.00) 0.05 (0.05) 0.25 (0.12)

AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
GB TP 4.70 (0.21) 4.90 (0.10) 4.80 (0.19) 4.30 (0.25)

FP 0.00 (0.00) 0.00 (0.00) 0.05 (0.05) 0.40 (0.18)
AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

GLASSO TP 4.80 (0.15) 4.80 (0.09) 4.35 (0.20) 3.80 (0.09)
FP 0.05 (0.05) 0.25 (0.12) 0.10 (0.10) 0.95 (0.37)

AUC 1.00 (0.00) 0.99 (0.01) 0.99 (0.00) 0.88 (0.01)
GSR TP 4.20 (0.22) 4.60 (0.18) 4.70 (0.16) 4.00 (0.07)

FP 0.15 (0.11) 0.35 (0.11) 0.25 (0.10) 2.30 (0.52)
AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.91 (0.01)

LNET TP 4.75 (0.24) 4.75 (0.24) 5.00 (0.00) 3.45 (0.17)
FP 21.20 (2.00) 25.90 (1.97) 31.35 (1.55) 2.15 (1.24)

AUC 0.74 (0.02) 0.69 (0.02) 0.65 (0.02) 0.91 (0.02)
NN-2 TP 4.80 (0.13) 4.40 (0.20) 4.80 (0.13) 4.20 (0.13)

FP 0.50 (0.22) 0.50 (0.26) 0.60 (0.29) 1.25 (0.32)
AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.95 (0.01)

NN-3 TP 4.85 (0.08) 4.90 (0.07) 4.85 (0.08) 4.45 (0.11)
FP 0.35 (0.16) 0.25 (0.12) 0.55 (0.22) 3.85 (0.70)

AUC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.96 (0.01)

TABLE VI
PERFORMANCE COMPARISON ON THE FRIEDMAN DATA, IN TERMS OF THE

AVERAGE MEAN SQUARED ERROR FOR DIFFERENT σ.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

LASSO 6.16 (0.05) 6.17 (0.06) 6.07 (0.05) 6.97 (0.12)
OMP 5.95 (0.07) 6.01 (0.07) 6.04 (0.06) 6.41 (0.16)
RF 5.21 (0.05) 5.19 (0.09) 5.30 (0.07) 7.81 (0.15)
GB 2.70 (0.05) 2.74 (0.04) 2.82 (0.06) 6.33 (0.15)
GLASSO 4.49 (0.12) 4.64 (0.17) 5.43 (0.14) 9.89 (0.23)
GSR 1.57 (0.05) 1.73 (0.07) 2.31 (0.11) 7.49 (0.19)
LNET 1.05 (0.19) 1.29 (0.26) 1.52 (0.12) 9.08 (0.47)
NN-2 1.58 (0.04) 1.71 (0.06) 2.14 (0.06) 5.86 (0.11)
NN-3 1.44 (0.04) 1.62 (0.04) 1.92 (0.04) 6.02 (0.16)

as before. We compare the prediction performance and explore
the three features which are most frequently selected by each
method. The results are summarized in Table VII.

From the results, both linear and NN-based methods can
identify ‘WT18’ and ‘HT18’ in all the replications. Meanwhile,
tree-based methods may miss ‘HT18’ but select ‘LG18’ instead,
which is only correlated with the response. Interestingly, we find
that the linear methods still predict well in this experiment. A
possible reason is that Equation (14) can be well-approximated
by a first-order Taylor expansion on ‘HT18’ at the value of
around 180, and the range of ‘HT18’ is within a small interval
around 180.

C. UJIIndoorLoc dataset

The UJIINdoorLoc dataset aims to solve the indoor localiza-
tion problem via WiFi fingerprinting and other variables such
as the building and floor numbers. A detailed description can
be found in [37]. Specifically, we have 520 Wireless Access
Points (WAPs) signals (which are continuous variables) and
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TABLE VII
EXPERIMENT RESULTS OF DIFFERENT METHODS ON THE BGSBOY DATASET. RMSE: THE MEAN OF THE ROOT MEAN SQUARED ERROR(STANDARD ERROR).

TOP 3 FEATURES: THE FEATURE NAME(NUMBER OF SELECTION, OUT OF 20 TIMES).

Method LASSO OMP RF GB GLASSO GSR LNET NN-2 NN-3

RMSE 0.05 (0.00) 0.04 (0.00) 3.10 (0.37) 2.32 (0.30) 0.15 (0.06) 0.09 (0.03) 0.03 (0.00) 0.06 (0.02) 0.12 (0.02)

Top 3 frequently
selected features

WT18 (20) WT18 (20) WT18 (20) WT18 (20) WT18 (20) WT18 (20) WT18 (20) WT18 (20) WT18 (20)
HT18 (20) HT18 (20) LG18 (20) LG18 (20) HT18 (20) HT18 (20) HT18 (20) HT18 (20) HT18 (20)
HT9 (16) ST18 (7) HT18 (10) HT18 (19) LG18 (8) LG18 (12) HT9 (9) HT9 (12) LG18 (17)

‘FLOOR’, ‘BUILDING’, ‘SPACEID’, ‘RELATIVEPOSITION’,
‘USERID’, and ‘PHONEID’ as categorical variables. The
response variable is a user’s longitude (‘Longitude’). The
dataset has 19937 observations. We randomly sample 3000
observations and split them into n = 2000 for training and
1000 for test. As part of the pre-processing, we create binary
dummy variables for the categorical variables, which results in
p = 681 variables in total. We explore the ten features that are
most frequently selected by each method. We set the cutoff
value as the tenth-largest variable importance. The procedure
is independently replicated 100 times. The results are reported
in Table VIII.

Based on the results, the ‘NN’ achieves the best prediction
performance and significantly outperforms other methods. As
for variable selection, since ‘BUILDING’ greatly influences
the location from our domain knowledge, it is non-surprisingly
selected by all methods in every replication. However, except
for ‘BUILDING’, different methods select different variables
with some overlapping, e.g., ‘PHONEID_14’ selected by
‘GLASSO’ and ‘GB’, ‘USERID_16’ selected by ‘NN’ and
‘LASSO’, which indicate the potentially important variables.
‘LNET’ again selects more variables than other methods. There
are nearly 60 variables selected by ‘LNET’ in every replication.
Nevertheless, those methods do not achieve an agreement for
variable selection. ‘NN’ implies that all the WAPs signals are
weak while categorical variables provide more information
about the user location. Given the very high missing rate
of WAPs signals (97% on average, as reported in [37]), the
interpretation of ‘NN’ seems reasonable.

D. Summary

The experiment results show the following points. First, ‘NN’
can stably identify the important variables and have competitive
prediction performance compared with the baselines. Second,
the increase of the noise level will hinder both the selection
and prediction performance. Third, the LASSO regularization
is crucial for ‘NN’ to avoid over-fitting, especially for small
data. Using group LASSO or a mixed type of penalty has
a similar performance as ‘NN’, while ‘LNET’ tends to over-
select importance variables. Fourth, the selection and prediction
performances are often positively associated for ‘NN’, but may
not be the case for baseline methods.

IV. CONCLUDING REMARKS

We established a theory for the use of LASSO in two-
layer ReLU neural networks. In particular, we showed that the

LASSO estimator could stably reconstruct the neural network
coefficients and identify the critical underlying variables under
reasonable conditions. We also proposed a practical method to
solve the optimization and perform variable selection. We
briefly remark on some interesting further work. First, a
limitation of the work is that we considered only a small r.
An interesting future problem is to study r that may grow fast
with p and n. Second, our experiments show that the algorithm
can be extended to deeper neural networks. It will be exciting
to generalize the main theorem to the multi-layer cases.

The Appendix includes proofs and experimental details.
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APPENDIX A
ANALYSIS: PROOF OF THEOREM 2

Let S be the index set with cardinality S consisting of
the support for W ? and top entries of Ŵ , where S will be
specified momentarily. Define

W := ŴS ∈ Rp×r,

and aj = âj , bj = b̂j . Define

d1(w1, a1, b1,w2, a2, b2)

=

{
‖w1 −w2‖1 + |b1 − b2| if a1 = a2;
‖w1‖1 + ‖w2‖1 + |b1|+ |b2| if a1 6= a2,

(15)

and

d2(w1, a1, b1,w2, a2, b2)

=

{ √
‖w1 −w2‖22 + |b1 − b2|2 if a1 = a2;

1 if a1 6= a2.
(16)

In addition, for permutation π on [r], let

D1 := min
π

r∑
j=1

d1(wπ(j), aπ(j), bπ(j),w
?
j , a

?
j , b

?
j ), (17)a

D2 := min
π

√√√√ r∑
j=1

d2(wπ(j), aπ(j), bπ(j),w
?
j , a

?
j , b

?
j )

2 (17)b

denote the D1-distance and D2-distance between (W ,a, b)
and (W ?,a?, b?), respectively. Then, one has the following
bounds.
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TABLE VIII
EXPERIMENT RESULTS OF DIFFERENT METHODS ON THE UJIINDOOR DATASET. RMSE: THE MEAN OF THE ROOT MEAN SQUARED ERROR(STANDARD

ERROR). TOP 10 FEATURES: THE FEATURE NAME(NUMBER OF SELECTION, OUT OF 20 TIMES).

Method LASSO OMP RF GB

RMSE 14.20 (0.08) 16.75 (0.12) 9.60 (0.12) 11.02 (0.09)

Top 10
frequently
selected
features

BUILDINGID_2 (20) BUILDINGID_2 (20) BUILDINGID_1 (20) BUILDINGID_2 (20)
BUILDINGID_1 (20) BUILDINGID_1 (20) BUILDINGID_2 (20) WAP120 (20)

USERID_9 (20) WAP099 (17) WAP141 (16) BUILDINGID_1 (20)
USERID_16 (20) USERID_10 (17) WAP120 (16) WAP141 (17)
USERID_10 (18) USERID_16 (14) WAP117 (14) WAP099 (16)

WAP099 (18) USERID_7 (13) WAP035 (13) PHONEID_14 (14)
USERID_7 (14) USERID_9 (10) WAP173 (13) WAP113 (13)

WAP121 (10) WAP120 (8) WAP167 (10) WAP114 (12)
WAP118 (8) WAP124 (8) WAP118 (8) WAP117 (12)
WAP039 (7) WAP101 (8) WAP113 (8) WAP140 (9)

Method GLASSO GSR LNET NN-2 NN-3

RMSE 11.25 (0.14) 11.44 (0.18) 11.19 (0.09) 8.86 (0.09) 8.86 (0.09)

Top 10
frequently
selected
features

BUILDINGID_1 (20) BUILDINGID_1 (20) BUILDINGID_1 (20) SPACEID_202 (20) SPACEID_202 (20)
BUILDINGID_2 (20) BUILDINGID_2 (20) BUILDINGID_2 (20) BUILDINGID_1 (20) BUILDINGID_1 (20)

PHONEID_14 (18) USERID_16 (17) PHONEID_22 (20) BUILDINGID_2 (20) BUILDINGID_2 (20)
SPACEID_202 (17) SPACEID_202 (15) PHONEID_6 (20) USERID_16 (19) USERID_16 (17)

USERID_8 (16) PHONEID_6 (14) PHONEID_8 (20) SPACEID_203 (16) SPACEID_203 (13)
USERID_16 (16) SPACEID_203 (14) SPACEID_103 (20) SPACEID_201 (14) SPACEID_201 (13)

FLOOR_3 (12) USERID_7 (13) SPACEID_136 (20) WAP140 (7) USERID_9 (8)
USERID_9 (9) SPACEID_201 (12) SPACEID_201 (20) WAP121 (5) WAP121 (8)

WAP478 (8) WAP141 (6) SPACEID_202 (20) WAP030 (5) WAP030 (7)
WAP099 (7) WAP176 (6) SPACEID_203 (20) SPACEID_224 (5) SPACEID_224 (5)

Lemma 1. For any W ∈ Rp×r with ‖W ‖0 ≤ S, there exists
some universal constants c4, c5 > 0 such that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ c4 min

{
1

r
,D2

2

}
(18)

holds with probability at least 1− δ provided that

n ≥ c5S3r4 log4 p

δ
. (19)

Lemma 2. Then, there exists a universal constant c6 > 0 such
that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2

holds with probability at least 1− δ.

By comparing the bounds given in Lemma 1 and 2, one has

c4 min

{
1

r
,D2

2

}
≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

provided that
n > c5S

3r4 log4 p

δ
.

Let Ŝ? be the index set with cardinality 2s consisting of
the support for W ? and top entries of Ŵ . In addition, let

D?
1 and D?

2 denote the D1-distance and D2-distance between(
ŴŜ? , â, b̂

)
and (W ?,a?, b?) in a similar way as (17).

Observing the fact that for S ≥ 2s, one has S? ⊂ Ŝ? ⊂ S , we
have

‖wj −w?
j ‖2 ≥ ‖wj,Ŝ? −w

?
j ‖2 = ‖ŵj −w?

j ‖2,

after some permutation, and then

D?
2 ≤ D2.

In addition, after some permutation, we have D?
1 ≥

∥∥ŴŜ? −
W ?

∥∥
1
≥ ‖W ?‖1−

∥∥ŴS?∥∥1 and ‖W ‖1 ≤
∥∥Ŵ∥∥

1
≤ ‖W ?‖1.

Then,

D1 ≤ D?
1 +

∥∥∥ŴS − ŴŜ?∥∥∥
1
≤ D?

1 +
∥∥Ŵ∥∥

1
−
∥∥ŴS?∥∥1 ≤ 2D?

1 .

Combined with Lemma 3 in Appendix D, the above results
give

D?
2 ≤

2c6
c4
σ,

provided that for some constant c7 > 0

n ≥ c5S3 log4 p

δ
with S ≥ c7sr,

such that

c6

(
r

S
+
r log3 p

nδ

n

)
D?2

1 ≤
c4
8
D?2

2 .

Then, we can conclude the proof since after appropriate
permutation,

‖Ŵ −W ?‖F ≤ 2‖ŴŜ? −W
?‖F.
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APPENDIX B
PROOF OF LEMMA 1 (LOWER BOUND)

This can be seen from the following three properties.
• Consider the case that

D1 ≤ ε =
δ

4nr

√
π

log 4pn
δ

.

With probability at least 1− δ,

1

n

n∑
i=1

[ r∑
j=1

ajrelu(w>j xi + bj)

−
r∑
j=1

a?j relu(w?>
j xi + b?j )

]2
=
D2

1

ε2
1

n

n∑
i=1

[ r∑
j=1

ajrelu(w̃>j xi + b̃j)

−
r∑
j=1

a?j relu(w?>
j xi + b?j )

]2
, (20)

where w̃j = w?
j + ε

D1

(
wj −w?

j

)
and b̃j = b?j +

ε
D1

(
bj − b?j

)
.

• For any ε > 0 and

D1 ≥
ε√

S
n log pr

S log BS
εδ

,

there exists some universal constant C1 > 0, such that
with probability at least 1− δ,

1

n

n∑
i=1

[ r∑
j=1

ajrelu(w>j xi + bj)

−
r∑
j=1

a?j relu(w?>
j xi + b?j )

]2

≥ E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

− C1D
2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

εδ
. (21)

• For some universal constant C2 > 0

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥ C2 min

{
1

r
,D2

2

}
. (22)

Putting the above together. Let

ε = C3
δ

nr

√
S

n
log

BnS

δ
,

for some universal constant C3 > 0 such that

ε√
S
n log pr

S log BS
εδ

<
δ

4nr

√
π

log 4pn
δ

.

Inserting (22) into (21) gives that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ C2 min

{
1

r
,D2

2

}
− C1D

2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

εδ

≥ C2

2
min

{
1

r
,D2

2

}
, (23)

holds with probability at least 1 − δ provided that for some
constant C4 > 0

n ≥ C4S
3r4 log

pr

S
log

BS

εδ
log2 pn

δ
and

D1 ≥
δ

4nr

√
π

log 4pn
δ

.

Here, the last line holds due to Lemma 3 and we assume that
max {‖W ‖∞, ‖b‖∞} is bounded by some constant. On the
other hand, if

D1 <
δ

4nr

√
π

log 4pn
δ

,

it follows from (20) and (23) that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ D2
1

ε2
C2

2
min

{
1

r
, D̃2

2

}
=
C2

2
D2

2.

Summing up, we conclude the proof by verifying (20), (21),
and (22) below.

A. Proof of (20)

Since D1 ≤ ε = δ
4nr

√
π

log 4pn
δ

, without loss of generality,

we assume that aj = a?j for 1 ≤ j ≤ r, and

D1 =

r∑
j=1

(
‖wj −w?

j ‖1 + |bj − b?j |
)
≤ ε.

By taking union bound, with probability at least 1 − δ
2 , one

has for all 1 ≤ i ≤ n and 1 ≤ j ≤ r,∣∣w?>
j xi + b?j

∣∣ > δ

2nr

√
π

2
,

since ‖w?
j ‖2 ≥ 1 and xi ∼ N (0, I). In addition, for all

1 ≤ i ≤ n and 1 ≤ j ≤ r,∣∣w>j xi + bj −w?>
j xi − b?j

∣∣ ≤ ‖wj −w?
j ‖1‖xi‖∞ + |bj − b?j |

≤ ε
√

2 log
4pn

δ

holds with probability at least 1− δ
2 . Here, the last inequality

comes from the fact that with probability at least 1− δ
2 ,

‖xi‖∞ ≤
√

2 log
4pn

δ
for all 1 ≤ i ≤ n. (24)
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Putting together, we have with probability at least 1− δ,

u(w>j xi + bj) = u(w?>
j xi + b?j ), (25)

provided that

ε ≤ δ

4nr

√
π

log 4pn
δ

.

Note that u(x) = 1 if x > 0, and u(x) = 0 if x ≤ 0. Then
combining with the definition of w̃j and b̃j , the above property
yields

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

=
1

n

n∑
i=1

 r∑
j=1

a?ju(w?>
j xi + b?j )(w

>
j xi + bj −w?>

j xi − b?j )

2

=
D2

1

ε2
1

n

n∑
i=1

[ r∑
j=1

a?ju(w?>
j xi + b?j )

× (w̃>j xi + b̃j −w?>
j xi − b?j )

]2
=
D2

1

ε2
1

n

n∑
i=1

[ r∑
j=1

ajrelu(w̃>j xi + b̃j)

−
r∑
j=1

a?j relu(w?>
j xi + b?j )

]2
,

and the claim is proved. Here, the last equality holds due
to (25) and aj = a?j for j = 1, . . . , r.

B. Proof of (21)

Notice that∣∣ajrelu(w>j x+ bj)− a?j relu(w?>
j xi + b?j )

∣∣
≤
{
‖wj −w?

j ‖1‖x‖∞ + |bj − b?j | if aj = a?j ,(
‖wj‖1 + ‖w?

j ‖1
)
‖x‖∞ + |bj |+ |b?j | if aj 6= a?j ,

which leads to∣∣∣∣∣∣
r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

∣∣∣∣∣∣
≤ D1 max {‖x‖∞, 1} . (26)

For any fixed (W ,a, b), let

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

and define the following event set

E :=

{
‖xi‖∞ ≤

√
2 log

4pn

δ
for all 1 ≤ i ≤ n

}
.

Then, with probability at least 1− δ,

1

n

n∑
i=1

(
z2i − E

[
z2i
])

(27)

=
1

n

n∑
i=1

{
z2i 1(E)− E

[
z2i 1(E)

]
− E

[
z2i 1(E)

]}
≥ −4D2

1 log
4pn

δ

√
1

n
log

2

δ
−D2

1

δ

n

≥ −5D2
1 log

4pn

δ

√
1

n
log

2

δ
. (28)

Here, the first line holds due to (24); the last line comes from
Hoeffding’s inequality, and the fact that∣∣E [z2i 1(E)

]∣∣ ≤ D2
1

∣∣∣∣∣E
[
‖xi‖2∞1(‖xi‖∞ >

√
2 log

4pn

δ
)

]∣∣∣∣∣
≤ D2

1

∫ ∞
√

2 log 4pn
δ

x2dP(‖xi‖∞ < x)

≤ D2
1

∫ ∞
√

2 log 4pn
δ

4xp exp(−x
2

2
)dx ≤ D2

1

δ

n
.

In addition, consider the following ε-net

Nε :=

{
(W ,a, b) : |Wij | ∈

ε

r + S

[⌈B(r + S)

ε

⌉]
,

‖W ‖0 ≤ S, |bj | ∈
ε

r + S

[⌈B(r + S)

ε

⌉]
, |aj | = 1

}
,

where [n] := {1, 2, . . . , n− 1}. Then, for all (W ,a, b) with
‖W ‖1 ≤ B and ‖b‖1 ≤ B, there exists some point, denoted
by
(
W̃ , ã, b̃

)
, in Nε whose D1-distance from (W ,a, b) is

less than ε. For simplicity, define

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

z̃i :=

r∑
j=1

ãjrelu(w̃>j xi + b̃j)−
r∑
j=1

a?j relu(w?>
j xi + b?j ).

Similar to (26), we can derive that∣∣∣∣∣∣
r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

ãjrelu(w̃>j x+ b̃j)

∣∣∣∣∣∣
≤ εmax {‖x‖∞, 1} ,

which implies∣∣z2i − z̃2i ∣∣ ≤ ε (ε+D1) max
{
‖xi‖2∞, 1

}
,

and then with probability at least 1− δ,

1

n

n∑
i=1

(
z2i − E

[
z2i
])
− 1

n

n∑
i=1

(
z̃2i − E

[
z̃2i
])

≥ −4ε (ε+D1) log
4pn

δ
. (29)

In addition, it can be verified that

log |Nε| ≤ C5S log
pr

S
log

BS

ε
, (30)
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for some universal constant C5 > 0. Combining (28), (29),
and (30) leads to

1

n

n∑
i=1

(
z2i − E

[
z2i
])
≥− 5 (ε+D1)

2
log

4pn

δ

√
1

n
log

2 |Nε|
δ

− 4ε (ε+D1) log
4pn

δ
.

It follows that (21) holds.

C. Proof of (22)

We first consider a simple case that bj = 0 and b?j = 0 for
1 ≤ j ≤ r, and show that for some small constant C6 > 0,

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ C6 min

{
1

r
,D2

2

}
. (31)

Next, we will assume that

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≤ C6

r
.

Otherwise, Inequality (31) already holds. According to
Lemma 4, one has for any constant k ≥ 0, there exists some
constant αk > 0 such that

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ αk
∥∥∥∥ r∑
j=1

aj‖wj‖2
( wj
‖wj‖2

)⊗2k
−

r∑
j=1

a?j‖w?
j ‖2
( w?

j

‖w?
j ‖2
)⊗2k∥∥∥∥2

F

. (32)

Assumption 1 tells us that for any integer k ≥ 2
ω ,∣∣〈v?j1 ,v?j2〉∣∣ ≤ 1

r2
. (33)

where

vj := vec

(( wj
‖wj‖2

)⊗k)
with βj := aj‖wj‖2,

and

v?j := vec

(( w?
j

‖w?
j ‖2
)⊗k)

with β?j := a?j‖w?
j ‖2.

Then, (32) gives

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ α3k

∥∥∥∥∥∥
r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

.

Define

S+ := span {vj}j:βj>0 S− := span {vj}j:βj<0 ,

and

S?+ := span
{
v?j
}
j:β?j>0

S?− := span
{
v?j
}
j:β?j<0

.

Let PS and P⊥S denote the projection onto and perpendicular
to the subspace S, respectively. By noticing that P⊥S−vj = 0

for j obeying βj < 0, and P⊥S?+v
?
j = 0 for j obeying β?j > 0,

one has∥∥∥∥∥∥
r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

≥
∥∥∥∥ ∑
j:βj>0

βj
(
P⊥S−vj

)⊗2 ⊗ (P⊥S?+vj)⊗4
−
∑

j:β?j<0

β?j
(
P⊥S−v

?
j

)⊗2 ⊗ (P⊥S?+v?j )⊗4
∥∥∥∥2
F

≥
∑

j:β?j<0

∥∥∥β?j (P⊥S−v?j )⊗2 ⊗ (P⊥S?+v?j )⊗4∥∥∥2F
≥ 1

2

∑
j:β?j<0

∥∥∥P⊥S−v?j∥∥∥4
2
,

where the penultimate inequality holds since the inner product
between every pair of terms is positive, and the last inequality
comes from the facts that |β?j | ≥ 1 and (33).

Moreover, by means of AM-GM inequality and (33), one
can see that∑

j:β?j<0

∥∥∥P⊥S−v?j∥∥∥4
2
≥ 1

r

( ∑
j:β?j<0

∥∥∥P⊥S−v?j∥∥∥2
2

)2
=

1

r

∥∥∥P⊥S−[v?j ]j:β?j<0

∥∥∥4
F

≥ 1

2r

∥∥∥P⊥S−PS?−

∥∥∥4
F
.

Then combining with (31), the above result and the counterpart
for β?j > 0 lead to

dim(S−) ≥ dim(S?−) and dim(S+) ≥ dim(S?+),

which gives

dim(S−) = dim(S?−) and dim(S+) = dim(S?+).

Furthermore, for some small constant C6 > 0, we have

dist(S−,S?−) ≤ C6 and dist(S+,S?+) ≤ C6.

Let P⊥i denote the projection perpendicular to

span
{
v?j
}
j 6=i:β?j>0

,

and

γj :=
βj〈P⊥S−vj , P

⊥
S−v

?
i 〉2〈P⊥i vi, P⊥S−v

?
i 〉2∥∥P⊥S−v?i ∥∥22∥∥P⊥i v?i ∥∥2 .
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Then for any i,∥∥∥∥∥∥
r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

≥
∥∥∥∥ ∑
j:βj>0

βj
(
P⊥S−vj

)⊗2 ⊗ v⊗4j
−

r∑
j=1

β?j
(
P⊥S−v

?
j

)⊗2 ⊗ v?⊗4j

∥∥∥∥2
F

≥ 1

2

∥∥∥∥ ∑
j:βj>0

βj
(
P⊥S−vj

)⊗2 ⊗ v⊗4j
−
∑

j:β?j>0

β?j
(
P⊥S−v

?
j

)⊗2 ⊗ v?⊗4j

∥∥∥∥2
F

≥ 1

2

∥∥∥∥ ∑
j:βj>0

βj
(
P⊥S−vj

)⊗2 ⊗ (P⊥i vi)⊗2 ⊗ v⊗2j
− β?i

(
P⊥S−v

?
i

)⊗2 ⊗ (P⊥i v?i )⊗2 ⊗ v?⊗2i

∥∥∥∥2
F

≥ 1

2

∥∥∥∥∥∥
∑
j:βj>0

γjv
⊗2
j − β

?
i

∥∥P⊥S−v?i ∥∥22∥∥P⊥i v?i ∥∥2v?⊗2i

∥∥∥∥∥∥
2

F

,

which, together with (31), implies that there exists some j such
that

‖
√
βjvj −

√
β?i v

?
i ‖22 ≤

1

r
.

Without loss of generality, assume that

‖
√
βjvj −

√
β?j v

?
j ‖22 ≤

1

r
, for all 1 ≤ j ≤ r. (34)

Then

E
[ r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

]2
≥ αk

∥∥∥∥∥∥
r∑
j=1

βjvjv
>
j −

r∑
j=1

β?j v
?
jv

?>
j

∥∥∥∥∥∥
2

F

≥ αk
r∑
j=1

∥∥βjvjv>j − β?j v?jv?>j ∥∥2F
− αk

2r

 r∑
j=1

∥∥βjvjv>j − β?j v?jv?>j ∥∥F
2

≥ αk
2

r∑
j=1

∥∥βjvjv>j − β?j v?jv?>j ∥∥2F .
Here, the first line comes from (32); the second line holds
through the following claim∣∣〈βj1vj1v>j1 − β?j1v?j1v?>j1 , βj2vj2v>j2 − β?j2v?j2v?>j2 〉∣∣
≤ 1

2r
‖βj1vj1v>j1 − β

?
j1v

?
j1v

?>
j1 ‖2‖βj2vj2v

>
j2 − β

?
j2v

?
j2v

?>
j2 ‖2

since for δj :=
√
βjvj −

√
β?j v

?
j ,

βjvjv
>
j − β?j v?jv?>j = δjδ

>
j +

√
β?j δjv

?>
j +

√
β?j v

?
j δ
?>
j .

Then the conclusion is obvious by noticing that

∥∥βjvjv>j − β?j v?jv?>j ∥∥F ≥ ‖wj −w?
j ‖2.

Finally, we analyze the general case with bj , b?j 6= 0, which is
similar to the above argument. For simplicity, we only explain
the different parts here. According to Lemma 4, one has for
any constant k ≥ 0, there exists some constant αk > 0 and
some function fk : R→ R such that

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥
∞∑

k≥ 12
ω

∥∥∥∥ r∑
j=1

ajfk(
bj
‖wj‖2

)‖wj‖2
( wj
‖wj‖2

)⊗k
−

r∑
j=1

a?jfk(
b?j
‖w?

j ‖2
)‖w?

j ‖2
( w?

j

‖w?
j ‖2
)⊗k∥∥∥∥2

F

&
r∑
j=1

∞∑
k≥ 12

ω

∥∥∥∥∥ajfk(
bj
‖wj‖2

)wj − a?jfk(
b?j
‖w?

j ‖2
)w?

j

∥∥∥∥∥
2

F

&
r∑
j=1

inf
Rl(x)

E
[
ajrelu(w>j x+ bj) (35)

− a?j relu(w?>
j x+ b?j )−Rl(x)

]2
&

r∑
j=1

(
‖wj −w?

j ‖22 + |bj − b?j |2
)
.

Here, l =
[
12
ω

]
, and the second inequality holds in a similar

way to above analysis. Then the general conclusion is handy.

APPENDIX C
PROOF OF LEMMA 2 (UPPER BOUND)

For simplicity, let

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

ẑi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

âjrelu(ŵ>j xi + b̂j).

Recall the optimality of
(
Ŵ , â, b̂

)
with respect to the problem

in (3). According to the triangle inequality, one has

√√√√ 1

n

n∑
i=1

z2i ≤

√√√√ 1

n

n∑
i=1

ẑ2i + 2σ. (36)
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We can bound the first term in the right hand side by

1

n

n∑
i=1

ẑ2i

=
1

n

n∑
i=1

 r∑
j=1

aj

(
relu(w>j xi + bj)− relu(ŵ>j xi + b̂j)

)2

≤ 1

n

n∑
i=1

 r∑
j=1

∣∣(wj − ŵj)>xi∣∣
2

≤ r

n

n∑
i=1

r∑
j=1

∣∣(wj − ŵj)>xi∣∣2 ,
where the second line holds due to the contraction property
of ReLu function, and the last line comes from the AM-GM
inequality. Lemma 5 further gives for some constant C7 > 0,
r∑
j=1

1

n

n∑
i=1

∣∣(wj − ŵj)>xi∣∣2 ≤C7

r∑
j=1

‖wj − ŵj‖22

+ C7

log3 p
nδ

n

r∑
j=1

‖wj − ŵj‖21

holds with probability at least 1− δ. In addition,
r∑
j=1

‖wj − ŵj‖21 ≤
∥∥∥W − Ŵ

∥∥∥2
1

≤
(
‖W ?‖1 − ‖Ŵ ‖1

)2
≤ D2

1,

and
r∑
j=1

‖wj − ŵj‖22 =
∥∥∥W − Ŵ

∥∥∥2
1
≤
∥∥∥W − Ŵ

∥∥∥
1

∥∥∥W − Ŵ
∥∥∥
∞

≤

(
‖W ?‖1 − ‖Ŵ ‖1

)(
‖W ?‖1 − ‖Ŵ ?‖1

)
S/2

≤ 4

S
D2

1.

Here, Ŵ ? denote the entries of Ŵ on the support set for W ?,
and we make use of the fact that ‖Ŵ ‖1 ≤ ‖W ?‖1 and∥∥∥W − Ŵ

∥∥∥
∞
≤ ‖Ŵ

? − Ŵ ‖1
S − s

≤ ‖W
?‖1 − ‖Ŵ ?‖1
S/2

.

Putting everything together gives the desired result.

APPENDIX D
TECHNICAL LEMMAS

Lemma 3. For any (W ,a, b) with ‖W ‖0 +‖b‖0 +‖W ?‖0 +
‖b?‖0 ≤ S. Assume that ‖W ‖1 + ‖b‖1 ≤ ‖W ?‖1 + ‖b?‖1
and ‖w?

j ‖22 + |b?j |2 ≤ 1. Then one has

D1 ≤ 2
√
SD2, (37)

where D1, D2 are defined in (17).

Proof. For simplicity, assume that

D2
2 =

∑
j∈J

(
‖wj −w?

j ‖22 + |bj − b?j |2
)
+
∑
j /∈J

(
‖w?

j ‖22 + |b?j |2
)
.

Here, j ∈ J means that aj = a?j and

‖wj −w?
j ‖22 + |bj − b?j |2 ≤ ‖w?

j ‖22 + |b?j |2.

Then, according to the AM-GM inequality, one has
√
SD2 ≥

∑
j∈J

(
‖wj −w?

j ‖1 + |bj − b?j |
)

+
∑
j /∈J

(
‖w?

j ‖1 + |b?j |
)

≥
∑
j∈J

(
‖w?

j ‖1 − ‖wj‖1 + |b?j | − |bj |
)

+ ‖W ?‖1

+ ‖b?‖1 −
∑
j∈J

(
‖w?

j ‖1 + |b?j |
)

≥
∑
j /∈J

(
‖wj‖1 + |bj |

)
,

which implies that

2
√
SD2 ≥

∑
j∈J

(
‖wj −w?

j ‖1 + |bj − b?j |
)

+
∑
j /∈J

(
‖w?

j ‖1 + |b?j |+ ‖wj‖1 + |bj |
)
.

Thus we conclude the proof.

Lemma 4 (Theorem 2.1 [27]). For any constant k ≥ 0, there
exists some universal function fk : R→ R such that

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

=

∞∑
k=0

∥∥∥∥ r∑
j=1

ajfk

(
bj
‖wj‖2

)
‖wj‖2

(
wj
‖wj‖2

)⊗k
−

r∑
j=1

a?jfk

(
b?j
‖w?

j ‖2

)
‖w?

j ‖2
(

w?
j

‖w?
j ‖2

)⊗k∥∥∥∥2
F

, (38)

with

αk := f2k(0) > 0, for all k > 0. (39)

In addition, we have

inf
Rl

E

arelu(w>x+ b)−
r∑
j=1

a?relu(w?>x+ b?)−Rl(x)

2

=

∞∑
k>l

∥∥∥∥afk( b

‖w‖2

)
‖w‖2

(
w

‖w‖2

)⊗k
− a?fk

(
b?

‖w?‖2

)
‖w?‖2

(
w?

‖w?‖2

)⊗k∥∥∥∥2
F

, (40)

where Rl denote a polynomial function of x with degree less
than l.

Lemma 5. There exists some universal constant c > 0, such
that for all w ∈ Rp,

1

n

n∑
i=1

∣∣w>xi∣∣2 ≤ c ‖w‖22 + c
log3 p

nδ

n
‖w‖21 , (41)
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holds with probability at least 1− δ.

Proof. Before proceeding, we introduce some useful tech-
niques about Restricted Isometry Property (RIP). Let X :=
1√
n

[x1,x2, . . . ,xn]. For some constant c0 > 0, if n ≥
c0
(
s log p

s + log 1
δ

)
, then with probability at least 1− δ,∥∥X>w∥∥2

2
≤ 2‖w‖22 (42)

holds for all w satisfying ‖w‖0 ≤ s.
We divide the entries of w into several groups S1 ∪ S2 ∪

. . .∪SL with equal size s (except for SL), such that the entries
in Sj are no less than Sk for any j < k. Then, according (42),
one has

1

n

n∑
i=1

(w>xi)
2 = w>XX>w =

∑
j,k

w>SjXX
>wSk

≤ 2
∑
j,k

‖wSj‖2‖wSk‖2 = 2
( L∑
l=1

‖wSl‖2
)2
.

In addition, the order of wSl yields for l > 1,

‖wSl‖2 ≤
√
s‖wSl‖∞ ≤

1

(l − 1)
√
s
‖w‖1,

which leads to( L∑
l=1

‖wSl‖2
)2
≤ 2‖wS1‖22 + 2

( L∑
l=2

1

(l − 1)
√
s
‖w‖1

)2
≤ 2‖w‖22 +

2 log2 L

s
‖w‖21.

We conclude the proof by combining the above inequalities.

APPENDIX E
FURTHER EXPERIMENTS DETAILS

The hyper-parameters used in Section III are summarized
in Table IX.

We briefly explain the variable selection procedure. We first
obtain a vector of the variables’ importance. For ‘LASSO’ and
‘OMP’, we use the absolute value of the estimated coefficient
as the variable importance; for ‘NN’, ‘GLASSO’, and ‘GSR’,
we obtain the importance by applying row-wise `2-norm to the
weight matrix in the input layer of the neural network; for ‘RF’,
‘GB’, and ‘LNET’, we use the importance produced by those
methods. Once we have the importance vector, we can obtain
the receiver operating characteristic (ROC) curve for synthetic
datasets by varying the cut-off thresholds and calculate the
AUC score. As for variable selection, we apply GMM of two
mixtures to the importance vector for the synthetic datasets. The
variables in the cluster with higher importance are considered
significant. Then, we calculate the correctly or wrongly selected
variables accordingly. For BGSBoy and UJIIndoorLoc datasets,
the variables with the three- and ten-largest importance are
selected, respectively.
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