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14 1. INTRODUCTION

15 Imaging using high-energy radiation with a spectrum ranging
16 from x-ray to γ-ray has found many applications, including
17 high-energy astronomy [1,2] and medical imaging [3–5]. In
18 these wavelengths, imaging using lenses is not possible since
19 the rays cannot be refracted or reflected, and hence cannot
20 be focused. An alternative technique to do imaging in this spec-
21 trum is to use pinhole cameras, in which the lenses are replaced
22 with a tiny pinhole. The problem in these cameras is that the
23 pinholes pass a low intensity light, while for imaging purposes,
24 a much stronger light is needed. Increasing the size of the pin-
25 hole cannot solve this problem as it increases the intensity at the
26 expense of decreased resolution of the image. Coded aperture
27 imaging (CAI) is introduced to address this issue by increasing
28 the number of the pinholes. A coded aperture is a grating or
29 grid that casts a coded image on a plane of detectors by blocking
30 and unblocking the light in a known pattern, and produces a
31 higher signal-to-noise ratio (SNR) of the image while maintain-
32 ing a high angular resolution [6,7]. The coded image is then
33 correlated with a decoding array in order to reconstruct the
34 original image. The deployment of pinholes and the decoding
35 array are usually jointly designed to make the reconstruction
36 perfect or near-perfect. Figure 1 gives a schematic diagram
37 of a CAI system. We emphasize that the theory’s physical as-
38 sumptions are: (1) each radiating point in the object produces
39 an image with a constant magnification of the aperture; (2) the
40 radiation is isotropic with respect to the detector area. Coded
41 aperture designs for cases where (1) and (2) are violated have
42 also been studied, for example in [8].

43A coded aperture is usually defined based on an integer lat-
44tice, and can therefore be modeled as a two-dimensional array.
45For generality, we define the encoding array C �c1; c2; � � � ; cn�,
46c1; c2; � � � ; cn ∈ Z, as an n-dimensional array with complex-
47valued entries and

C �c1; � � � ; cn� � 0;

�c1; � � � ; cn� ∉ �0; L1 − 1� × � � � �0; Ln − 1�:

48For simplicity, C �c1; � � � ; cn� is also denoted by C �a�, where
49a � �c1; � � � ; cn�T ∈ Rn. The decoding array D can be defined
50likewise. The set from which the elements of the aperture arrays
51take values from is referred to as an “alphabet.” In coded aper-
52ture imaging, a physically realizable coding aperture usually
53consists of binary alphabet, where 0 and 1 respectively represent
54closed and open pinholes. A complex-valued array C can
55be constructed by properly combining multiple coded images
56obtained from different aperture masks [9,10]. We show that the
57number of {0, 1} masks needed to build anN -phase alphabet set
58is �3N − 1�∕2 for odd N and N for even N . The calculations
59are based on the following facts: implementing a root of unity in
60the form of x � iy, xy ≠ 0�i2 � −1� requires two masks, a pair
61in the form of �x � iy; x − iy� or �x � iy; −x � iy�, xy ≠ 0 re-
62quires three masks, and 1, −1, i, −i each requires one mask. In
63this work, we assume that the elements of an aperture could be
64unimodular complex numbers. In the future, the development
65in the hardware technology may make the implementation of
66the spatial phase modulators possible for γ-rays, which can lead
67to realizable complex-valued physical masks. In that case, if both
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68 coding and decoding systems use such masks, an analog
69 reconstruction could be obtained.
70 For a planar object that is projected onto a gamma camera
71 through a coding aperture, the object is perfectly decoded if
72 C 	 D � mδ�r�, where 	 denotes the convolution, m is an
73 integer, m ≤ ω with ω � L1L2 � � � Ln being the number of pin-
74 holes, and δ�r� is the discrete delta function, which corresponds
75 to an array with 1 centered at the origin and 0 elsewhere [3,7].
76 The value of m is also called “the SNR gain,” and larger m’s
77 correspond to a better reconstruction quality.
78 The designs of the coded apertures are connected to the
79 concept of “autocorrelation.” The autocorrelation can be
80 defined in two different ways: periodic and aperiodic, and both
81 of them can be used in the design of the coded apertures
82 through different approaches, as will be pointed out later in
83 this paper. One is “aperiodic autocorrelation.” The aperiodic
84 autocorrelation function AC �·� is defined as

AC �v1; � � � ; vn� �
X

c1 ;���;cn∈Z
C �c1; � � � ; cn�C �c1 � v1; � � � ; cn � vn�;

85 where v1; v2 � � � ; vn ∈ Z and c̄ is the complex conjugate of c.
86 The periodic autocorrelation will be defined later in the paper.
87 By choosing D � C−, where C−�c1; � � � ; cn� � C �−c1; � � � ; −cn�,
88 C 	 D gives the autocorrelation of C .
89 Nonredundant arrays (NRAs) have been introduced to
90 arrange the pinholes in CAI, since they have the property that
91 the aperiodic autocorrelations consist of a central spike with
92 sidelobes equal to one within certain lag (range of the argument
93 v1; v2 � � � ; vn) and either zero or unity beyond the lag [11].
94 Pseudonoise arrays (PNAs) [12] are another alternative, whose
95 periodic autocorrelations consist of a central spike with −1 side-
96 lobes, which lead to designs of a pair of arrays such that their
97 convolution is a multiple of the discrete delta function [13].
98 Twin primes, quadratic residues, and m-sequences are examples
99 of PNA designs. NRA- and PNA-based designs are both re-

100 ferred to as uniformly redundant arrays (URAs) [7,13,14].
101 However, the sizes of the URA structures are restricted and can-
102 not be adapted to any particular detector [2,15]. Besides this,
103 the SNR gain for URAs is limited to ω∕2 [7,16–18]. Other
104 designs that have also been used in CAI are geometric design
105 [19] and pseudonoise product design [20], but they are also
106 available only for a limited number of sizes—the former design
107 is for square arrays, and the latter one requires that pseudonoise
108 sequences exist for each dimension.

109Though it is generally hard to find a single pair of coding
110and decoding arrays, it might be easier to find several pairs that
111act perfectly while combined together. Based on this idea, we
112look for a broader range of designs for the coding arrays in this
113paper. We show that the aperture can be customized to any
114shape (boundary) on any lattice, satisfying various demands
115in practical situations. Our work is inspired by the Golay
116complementary arrays, which are defined as a pair of arrays
117whose aperiodic autocorrelations sum to zero in all out-of-
118phase positions. They have been used for pinhole arrangement
119in order to obtain the maximum achievable SNR gain,
120while eliminating the sidelobes of the decoded image [3].
121We note that there is a natural mapping between a pair of
122Golay complementary arrays, say C1 and C2, and a CAI system
123consisting of two parallel coding/decoding apertures, as illus-
124trated in Fig. 2, where D1 � C−

1, D2 � C−
2. When an object

125goes through the system, the sidelobes are completely canceled
126out by adding the two decoded images.
127Though an aperture is usually defined based on an integer
128lattice, we consider the design problem in the context of a
129general lattice, naturally arising from practical implementa-
130tions. For example, usually the distance between two pinholes
131should be no less than a given threshold due to the physical
132constraints. It has been shown by Fejes [21] that the lattice
133arrangement of circles with the highest density in the two-
134dimensional Euclidean space is the hexagonal packing arrange-
135ment, in which the centers of the circles are arranged in a hex-
136agonal lattice. Thus, given the minimal distance allowed among
137pinholes, the most compact arrangement (which corresponds
138to the largest possible SNR gain) is hexagonal lattice.
139The outline of this paper is given below. In Section 2 we
140briefly present related work on Golay complementary array
141pairs which are based on aperiodic autocorrelation, and then
142propose complementary lattice arrays and other related new
143concepts, such as the complementary array banks. This general
144framework leads to the new concept called multichannel CAI
145systems, which extends the classical CAI systems. We provide
146the concept, theory, and the design methodology. Due to the
147reasons mentioned before, our examples are mainly based on
148two-dimensional hexagonal arrays and unimodular alphabets,
149which consist of unimodular complex numbers. Nevertheless,
150the methodology given in this work could be further general-
151ized to higher dimensions. In Section 3 we review the URA
152literature that is mostly based on periodic autocorrelation. We
153further generalize the related concepts in Section 4 in a similar
154fashion. This leads to a new class of aperture designs that exist
155for sizes for which URAs do not, while having the desirable im-
156aging characteristics of URAs. In Section 5, we provide computer
157simulations demonstrating the performance of our schemes.

F1:1 Fig. 1. Illustration of the CAI system.

F2:1Fig. 2. CAI system with two parallel channels: a planar object is the
F2:2input to the coding apertures C1, C2, and a decoded image is the out-
F2:3put from the decoding apertures C−

1, C
−
2.
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158 2. CONCEPT, THEORY, AND DESIGN OF
159 COMPLEMENTARY LATTICE ARRAYS

160 A. Golay Complementary Arrays

161 In this section we briefly introduce related works on Golay
162 complementary array pairs. Golay [22] first introduced
163 Golay complementary sequence pairs in 1951 to address the
164 optical problem of multislit spectrometry. These sequences
165 were later used for many other applications, including horizon-
166 tal modulation systems in communication [23], orthogonal
167 frequency division multiplexing [24], Ising spin systems [25],
168 and channel measurement [26,27]. Barker arrays, which are
169 closely related to complementary array pairs [28], are a f
1g
170 binary array C such that for all v1; � � � ; vn ∈ Z; �v1; � � � ; vn� ≠
171 �0; � � � ; 0�,

jAC �v1; � � � ; vn�j ≤ 1: (1)

172 Another related concept is the NRA, which also satisfies the
173 condition (1). Its only difference with the Barker array is that
174 it is {0, 1}-binary.
175 Golay complementary array pairs address the scarcity of
176 Barker arrays and NRAs. The basic idea of Golay complemen-
177 tary array pairs is to use the nonzero part of one autocorrelation
178 to “compensate” the nonzero counterpart of the other [22].
179 Specifically, a pair of arrays C1 and C2 of size L1 × � � � × Ln is
180 a Golay complementary array pair, if the sum of their aperiodic
181 autocorrelations is a multiple of the discrete delta function, i.e.,

AC1�v1; � � � ; vn� � AC2�v1; � � � ; vn� � 0;

182 for all v1; � � � ; vn ∈ Z; �v1; � � � ; vn� ≠ �0; � � � ; 0�. The initial
183 study of Golay complementary sequence pairs (n � 1) was
184 for the binary case. Binary Golay complementary sequence
185 pairs are known for lengths 2, 10 [23], and 26 [29]. It has been
186 shown that infinitely many lengths could be synthesized using
187 the existing solutions [30]. Specifically, binary Golay comple-
188 mentary sequence pairs with length 2k110k226k3 exist, where
189 k1; k2; k3 are any nonnegative integers. Besides, no sequences
190 of other lengths have been found. Later on, larger alphabets
191 were considered, including 2n-phase [31], N -phase for even
192 N [32], the ternary case A � f−1; 0; 1g [33–35], and the
193 unimodular case [36]. Here, an alphabet A is called N -phase
194 if it consists of N th roots of unity, i.e., A � fζ : ζN � 1g; it is
195 unimodular if A � fζ : jζj � 1g.
196 In 1978, Ohyama et al. [3] constructed binary Golay com-
197 plementary array pairs (n � 2) of size 2k1 × 2k2 . The size is
198 then generalized to 2k110k226k3 × 2k410k526k6 , where kj’s,
199 j � 1; � � � ; 6 are any nonnegative integers [37,38].
200 We look for broader concepts and designs than complemen-
201 tary array pairs. The examples provided in this paper are for
202 the two-dimensional case, but they can be easily generalized
203 to higher dimensions. We start with the definitions in the fol-
204 lowing subsection.

205 B. Definitions and Notations

206 Definition 1 A lattice in Rn is a subgroup of Rn, which is gen-
207 erated from a basis by forming all linear combinations with integer
208 coefficients. In other words, a lattice L in Rn has the form

L �
�Xn

i�1

cieijci ∈ Z
�
;

209where feigni�1 forms a basis of Rn.
210For example, the integer lattice Z2 is generated from the
211basis e1 � �1; 0�, e2 � �0; 1�. The hexagonal (honeycomb)
212lattice A2 is generated from the basis e1 � �1; 0�,
213e2 � �− 1

2 ;
ffiffi
3

p
2 �. A classical array is based on an integer lattice.

214We now give the definition of an array that is based on a general
215lattice.
216Definition 2 Let L be a lattice. A lattice array CL;Ω;A de-
217fined over alphabet A and with support Ω is a mapping
218C �·� : L → A, such that C �a� � 0 for all a ∉ Ω and C �a� ∈ A
219for all a ∈ Ω, where C �a� is the entry at location a. The number
220of the elements of Ω (array size) is denoted by jΩj. We denote
221CL;Ω;A by C when there is no ambiguity.
222The following terms are made to simplify the notations.

223• Define CL;Ω�t ;Aftg as the shifted copy of CL;Ω;A by t
224(for t ∈ L), if

CL;Ω�t ;Aftg�a� � CL;Ω;A�a − t �; ∀ a ∈ L:

225For brevity, CL;Ω�t ;Aftg is simplified as Cftg.
226• Assume that the two arrays CL;Ω1;A1

1 and CL;Ω2 ;A2
2 are

227based on the same lattice L, but not necessarily on the same
228area. The addition of C1 and C2, C � C1 � C2, is an array
229whose entries are the addition of corresponding entries in C1

230and C2, i.e.,

Ω � Ω1 ∪ Ω2; C �a� � C1�a� � C2�a�; ∀ a ∈ Ω:
231• A set of arrays fCL;Ωm;Am

m gMm�1 are nonoverlapping if

Ωm1
∩ Ωm2

� ∅; ∀ m1; m2 ∈ 1; 2; � � � ; M; m1 ≠ m2:

232Definition 3 Assume that the lattice L is generated from feigni�1.
233The aperiodic autocorrelation function is

AC �v1; � � � ; vn� �
X
a∈Ω

C �a�C �a� v1e1 � � � � � vnen�;

234for v1; v2; � � � ; vn ∈ Z. The aperiodic cross-correlation function
235AC1C2�·� of two arrays C1 and C2 is

AC1C2�v1; � � � ; vn� �
X
a∈Ω

C1�a�C2�a� v1e1 � � � � � vnen�:

236Sometimes, AC �·� and AC1C2�·� are respectively denoted by C 	
237C− and C1 	 C−

2.

238Definition 4 A complementary array bank consists of pairs
239f�CL;Ω1m;A

m ; DL;Ω2m;A
m �gMm�1 such that the sum of the cross correla-

240tions is a multiple of the discrete delta function,

XM
m�1

Cm 	 D−
m �

XM
m�1

ACmDm�·� � ωδ�r�;

241where ω is a constant. M is called the order, or number of
242channels.
243Remark 1 There is a natural mapping between a complemen-
244tary array bank, say f�Cm;Dm�gMm�1, and a CAI system consisting
245of M parallel channels, each of which consists of a pair of coding
246and decoding apertures (Fig. 3). When a source image comes, it is
247coded and decoded through M channels simultaneously, and is
248then retrieved by simply adding the decoded images from all the
249channels. The multichannel CAI system proposed here provides a
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250 generalized solution to CAI design, by including a classical CAI
251 system as a special case. In the remaining part of Section 2, we
252 mainly study the complementary array sets, which provides insight
253 into the theory and design of complementary array banks in
254 general.
255 Definition 5 A set of arrays fCL;Ωm;A

m gMm�1 is a complemen-
256 tary array set if the sum of their aperiodic autocorrelations is a
257 multiple of the discrete delta function, i.e.,

XM
m�1

ACm�v1; v2; � � � ; vn� � 0; (2)

258 for all v1; v2; � � � ; vn ∈ Z, �v1; � � � ; vn� ≠ �0; � � � ; 0�. A Golay
259 complementary array pair is the special case when M � 2.
260 Remark 2 In practice, the pinholes on an aperture only change
261 the phase of a source point. Therefore, we assume a unimodular
262 alphabet by default. It is clear that if a set of nonoverlapping arrays
263 are based on unimodular∕N -phase alphabets, the addition of
264 them is also based on an unimodular∕N -phase alphabet.
265 The autocorrelation of any array is the same as that of its shifted
266 copy. This is because for any v1; � � � ; vn ∈ Z; t ∈ L, we have

ACftg�v1; � � � ; vn� �
X

a∈Ω�t

Cftg�a�Cftg�a� v1e1 � � � � � vnen�

�
X

a∈Ω�t

C �a − t �C �a − t � v1e1 � � � � � vnen�

�
X
a∈Ω

C �a�C �a� v1e1 � � � � � vnen�

� AC �v1; � � � ; vn�:

267 Furthermore, if fCmgMm�1 is a complementary array set, then
268 fCmftmggMm�1; ∀ tm ∈ L also forms a complementary array set.
269 In other words, a complementary array set is “invariant” under
270 shift operation.
271 Based on a unimodular alphabet, a complementary array set
272 fCmgMm�1 satisfies

PM
m�1 A

Cm�0; � � � ; 0� � M jΩj. Thus, the sum
273 of the autocorrelations can be written as a multiple of the discrete
274 delta function:

PM
m�1 Cm 	 C−

m � PM
m�1 A

Cm�·� � M jΩjδ�r�.
275 C. Motivating Design

276 In Ohyama et al.’s design, L is an integer lattice, and the num-
277 ber of complementary arrays is M � 2. The design consists of
278 two steps:

279• First, choose the following complementary sequence pair:

C1 � � 1 1 �; C2 � � 1 −1 �: (3)
280• Second, design complementary array pairs of larger sizes
281in an inductive manner. Assume that we already have a com-
282plementary pair C1, C2, with C1 	 C−

1 � C2 	 C−
2 � 2ωδ�r�,

283where ω is constant. Let

Ĉ1 � C1ft1g � C2ft2g; Ĉ2 � C1ft1g − C2ft2g; (4)

284where the shifts t1 and t2 are arbitrarily chosen.

285The validity of the construction Eq. (4) is clear from the fact
286that

Ĉ1 	 Ĉ−
1 � C1ft1g 	 C1ft1g− � C2ft2g 	 C2ft2g−

� C1ft1g 	 C2ft2g− � C2ft2g 	 C1ft1g−;
Ĉ2 	 Ĉ−

2 � C1ft1g 	 C1ft1g− � C2ft2g 	 C2ft2g−
− C1ft1g 	 C2ft2g− − C2ft2g 	 C1ft1g−;

287and thus,

Ĉ1	 Ĉ−
1� Ĉ2	 Ĉ−

2�2�C1ft1g	C1ft1g−�C2ft2g	C2ft2g−�
�2�C1	C−

1�C2	C−
2��4ωδ�r�: (5)

288In practice, t1 and t2 are chosen properly so that C1ft1g and
289C2ft2g do not overlap, which guarantees that Ĉ1 and Ĉ2 are
290still based on unimodular alphabets. For example, after apply-
291ing Eqs. (4) to Eq. (3) once, we have two possible complemen-
292tary array pairs:

Ĉ1 � � 1 1 1 −1 �; Ĉ2 � � 1 1 −1 1 �; (6)

293or

Ĉ1 �
�
1 1
1 −1

�
; Ĉ2 �

�
1 1
−1 1

�
: (7)

294The process of design is also illustrated in Fig. 4. By repeated
295applications of the above design process, complementary pairs
296of size 2k1 × 2k2 (for any nonnegative integers k1, k2) can be
297designed.
298Inspired by the above design for complementary array pairs
299on integer lattices, we look for a “seed” [similar to Eq. (3)] and
300a related scheme to “grow” the seed [similar to Eq. (4)] for
301the design of complementary hexagonal arrays. Admittedly,
302we build a simple mapping between two-dimensional arrays
303on an integer lattice and a hexagonal lattice (or other lattices)
304below,

CLs ;Ωs ;A�c1 	 es1 � c2 	 es2� � CLh;Ωh;A�c1 	 eh1 � c2 	 eh2�;
(8)

F3:1 Fig. 3. CAI system with M parallel channels: a planar object is the
F3:2 input to the coding apertures C1; � � � ; CM , and a decoded image is the
F3:3 output from the decoding apertures D−

1; � � � ; D−
M .

F4:1Fig. 4. Illustration of the design of complementary array pairs on
F4:2integer lattices.
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305 for all c1; c2 ∈ Z, where the superscripts s and h respectively
306 denote integer and hexagonal lattices. Under the above map-
307 ping, a set of complementary arrays on an integer lattice are
308 still complementary on a hexagonal lattice. This is due to
309 the fact that the autocorrelation of an array is only with respect
310 to the coefficients c1, c2. Nevertheless, the lattice array naturally
311 arises from practical designs. Consider the scenario where a
312 two- (or three)-dimensional coded aperture is to be built that
313 has pinholes arranged on a certain (suitably chosen) type of
314 lattice, which adapts to a particular physical aperture mask.
315 The designs preferably are based directly on that lattice instead
316 of the mapping to an integer lattice (with zero elements padded
317 in various regions) first and then mapping back to the
318 original one.

319 D. Design for the Basic Hexagonal Array of Seven
320 Points

321 We first study a very simple hexagonal pattern that acts as a
322 “seed.” It is an hexagonal array of seven points, which is shown
323 in Fig. 5. After that, we consider possible ways to “grow” the
324 seed.
325 We start from considering the existence of hexagonal com-
326 plementary array pairs, i.e., the order M is 2.
327 Theorem 1 For the basic seven-point hexagonal array, there
328 exists no complementary array pair with a unimodular alpha-
329 bet (Fig. 6).
330 The proof is given in Appendix A. One may be further in-
331 terested in the existence of a hexagonal complementary array
332 pair if the basic array does not have the origin 0 (Fig. 7). In
333 fact, it does not exist, either.
334 Theorem 2 For the array in Fig. 7, there exists no hexagonal
335 complementary array pair with a unimodular alphabet.
336 The proof is given in Appendix B. The nonexistence of
337 complementary array pairs for the array in Fig. 5 motivates
338 us to further consider higher-order M. We use the notation

339of “design parameter” for brevity. For a particular array pattern,
340if there is a complementary array set with M arrays and
341an N -phase alphabet, the pair �M;N � is called its design
342parameters. Furthermore, if the size of each array is equal
343to L, we refer to the triplet �M;N ; L� as its design parameters
344whenever there is no ambiguity.
345Fortunately, complementary array triplets with a unimodu-
346lar alphabet exist. In fact, we have found more than one design
347with �M;N ; L� � �3; 3; 7�. The following is an example.
348Design 1 Let ζ � exp�i2π∕3�. Let

C1 � fxkg6k�0; C2 � fykg6k�0; C3 � fzkg6k�0

349denote the entries of three hexagonal arrays shown in Fig. 5.
350Then

fxkg6k�0 � fζ2; ζ0; ζ2; ζ2; ζ0; ζ2; ζ0g;
fykg6k�0 � fζ1; ζ0; ζ2; ζ2; ζ1; ζ0; ζ1g;
fzkg6k�0 � fζ1; ζ0; ζ1; ζ1; ζ2; ζ0; ζ1g

351form a complementary array set (Fig. 8).
352We have also found more than one design with
353�M;N ; L� � �4; 2; 7�. The following is an example.
354Design 2 Let

C1 � fxkg6k�0; C2 � fykg6k�0;

C3 � fzkg6k�0; C4 � fwkg6k�0

355denote the entries of four hexagonal arrays shown in Fig. 5. Then

fxkg6k�0 � f1; 1; −1; 1; 1; −1; 1g;
fykg6k�0 � f−1; 1; 1; −1; −1; 1; 1g;
fzkg6k�0 � f1; 1; −1; 1; −1; 1; 1g;
fwkg6k�0 � f1; 1; 1; −1; 1; −1; 1g

356form a complementary array set (Fig. 9).

F5:1 Fig. 5. Basic hexagonal array with seven points.

F6:1 Fig. 6. There exists no seven-point hexagonal complementary pair
F6:2 with unimodular alphabet.

F7:1Fig. 7. Basic hexagonal array with six points.

F8:1Fig. 8. Complementary triplet with three-phase alphabet, i.e.,
F8:2�M;N ; L� � �3; 3; 7�, where ζk is represented by k, for k � 0; 1; 2.
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357 E. Methodology for Designing Larger Arrays

358 We now consider how to “grow” the seed that we have found in
359 order to design more and larger arrays. If � and 	 are respec-
360 tively considered as addition and multiplication operations,
361 then Eqs. (4) and (5) can be written in symbolic expression,

Ĉ � HCftg; (9)

ĈT Ĉ − � CftgTH THCftg− � 2CftgTCftg−; (10)

362 where

Ĉ �
�
Ĉ1

Ĉ2

�
; Ĉ − �

�
Ĉ−

1

Ĉ−
2

�
;

H �
�
1 1

1 −1

�
; Cftg �

�
C1ft1g
C2ft2g

�
;

363 and H T is the conjugate transpose of H . The key that Ĉ re-
364 mains to be a complementary pair is that H satisfies
365 H TH � 2I , i.e., H is a Hadamard matrix. This observation
366 could be generalized to the following result.
367 Theorem 3 Let U � �umk �M×M be a unitary matrix up
368 to a constant, i.e., U TU � cI , where c > 0. Assume that
369 fCL;Ωk ;A

k gMk�1 is a complementary array set. Then, fĈmgMm�1 is
370 also a complementary array set, where

Ĉm �
XM
k�1

umk · C
L;Ωk�tk ;A
k ftkg; m � 1; 2; � � � ;M;

371 t1; t2; � � � tM are arbitrarily chosen, and u · C is an array that
372 multiplies each entry of C by the scalar u.
373 Proof 1 Define a vector space on A (it is not necessarily a
374 field) with the addition operation � defined in Definition
375 2, and the variables

Ĉ �

2
64 Ĉ1

..

.

ĈM

3
75 and Cftg �

2
64

C1ft1g
..
.

CM ftM g

3
75:

376 Define a quadratic form with the multiplication operation * de-
377 fined as the convolution. The sum of aperiodic autocorrelations of
378 fĈmgMm�1 is

XM
m�1

Ĉm 	 Ĉ−
m � ĈT Ĉ − � CftgTU TUCftg− � cCftgTCftg−

� c
XM
m�1

CmftM g 	CmftM g−

� c
XM
m�1

Cm 	C−
m � cMωδ�r�: (11)

379Remark 3 We are interested in the following special case where

3801. A is an N -phase alphabet;
3812. U is the Fourier matrix: FM � �f mk �M×M ; f mk �
382expfi2π�m − 1��k − 1�∕Mg;
3833. The shifted arrays CL;Ωk�tk ;A

k ftkg; k � 1; � � � ;M do not
384overlap. The complementary array set fCkgMk�1 with design
385parameters �M;N ; jΩj� (if jΩkj � jΩj; k � 1; � � � ; M ) becomes
386fĈmgMm�1 with design parameters �M; lcm�N;M�; M jΩj� ac-
387cording to Theorem 3, where lcm stands for least common multi-
388ple. Besides this, we have c � M , ω � jΩj in Eq. (11).

389Theorem 3 provides a powerful tool to design more complex
390complementary arrays, which will be illustrated in
391Subsection 2.F. For future reference, we also include the
392following fact.
393Remark 4 Assume that C �1�; � � � ;C �K � are K complementary
394array sets on the same lattice, and the set C �k� has design param-
395eters �Mk;N k�, ∀ k � 1; � � � ; K . Then, it is clear that
396C � C �1� ∪ � � � ∪ C �K � can be thought as a new complementary
397set with design parameters �PK

k�1 Mk; lcm�N 1; � � � ; N K ��.
398F. Example—Design for the Hexagonal Array
399of 18 Points

400The basic hexagonal array of seven points studied in
401Subsection 2.D contains two layers, with one and six points,
402respectively. We now study the hexagonal array that contains
403one more layer (shown in Fig. 10). The design for this hexago-
404nal array is not very obvious, so we delete the center element,
405i.e., layer 1. (In fact, designs always exist for an arbitrarily
406shaped array, as will be discussed later. We delete the center
407point primarily for a cute solution.) The remaining 18 points
408are grouped into six basic triangular arrays: C1, C2, C3, C 0

1,
409C 0

2, C
0
3, which is shown in Fig. 11.

410This motivates the design of complementary array triplets
411for the basic triangular array shown in Fig. 12, where ζk is rep-
412resented by k, for k � 0; 1; 2, ζ � exp�i2π∕3�. In Fig. 12,

F9:1 Fig. 9. Complementary quadruplet with two-phase (binary) alpha-
F9:2 bet, i.e., �M;N ; L� � �4; 2; 7�, where 
1 is represented by 
.

F10:1Fig. 10. Hexagonal array with three layers (19 points).

1
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413 fC1; C2; C3g form a complementary array set. Due to sym-
414 metry, its rotated copy, C 0

1; C
0
2; C

0
3, also forms a complemen-

415 tary array set. Applying Theorem 3, we obtain the following
416 design.

417Design 3 Let

Ĉ �

2
6666666664

Ĉ1

Ĉ2

Ĉ3

Ĉ4

Ĉ5

Ĉ6

3
7777777775
� F 6

2
6666666664

C 0
1ft1g

C1ft2g
C 0

2ft3g
C2ft4g
C 0

3ft4g
C3ft4g

3
7777777775
;

418where t1; � � � ; t6 are such that Ĉ1; � � � ; Ĉ6 are arranged to form
419a hexagonal array of 18 points, as is shown in Fig. 11.
420Then fĈmg6m�1 forms a complementary array set. The design is
421also shown in Fig. 13, where ζk is represented by k, for
422k � 0; � � � ; 5, ζ � exp�i2π∕6�.
423G. Complementary Array Bank

424Up to this point, we have assumed that the coding array C and
425decoding array D are related via D�r� � C �−r�. The design of
426CAI thus reduces to the design of complementary array sets.
427Then we extend the autocorrelation to cross correlation, and
428the design of complementary array sets is accordingly extended
429to that of complementary array banks. The following result is a
430generalization of Theorem 3, and its proof is similar to that of
431Theorem 3.
432Theorem 4 LetΘ � �θmk �,Φ � �ϕmk � ∈ CM×M̃ be two ma-
433trices satisfying ΘTΦ � cI for some positive constant c. For a
434given lattice L, suppose that f�Ck; Dk�gMk�1 is a complementary
435array bank. Then, f�Ĉm; D̂m�gM̃m�1 is also a complementary array
436bank, where

Ĉm �
XM
k�1

θmk · Ckftkg; D̂m �
XM
k�1

ϕmk · Dkftkg;

m � 1; � � � ; M̃ ;

F11:1 Fig. 11. Hexagonal array with layer 2 and 3 (18 points).

F12:1 Fig. 12. Basic triangular complementary array triplets with three-
F12:2 phase alphabet, i.e., �M;N ; L� � �3; 3; 3�.

F13:1 Fig. 13. Complementary array set with parameter �M;N ; L� � �6; 6; 18�.
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437 t1; t2; � � � tM are arbitrarily chosen, and u · C is an array that
438 multiplies each entry of C by the scalar u.
439 Remark 5 The following case is of interest:

440 1. fCk; DkgMk�1 have N -phase alphabets;
441 2. Θ is equal to Φ and it contains M orthogonal columns of
442 the complex Fourier matrix FM̃ (thus M ≤ M̃ );
443 3. The shifted arrays Ckftkg do not overlap, neither
444 do Dkftkg; k � 1; � � � ; M .

445 Furthermore, if we assume that Ck � Dk, k � 1; � � � ;M and
446 the array sizes are equal to L, then the complementary array set
447 fCkgMk�1 has design parameters �M;N ; L�, and fĈmgMm�1 has de-
448 sign parameters �M̃ ; lcm�N; M̃�;ML�.
449 Lemma 1 Any single point, as the simplest array on any lattice,
450 forms a complementary set.
451 Remark 6 Lemma 1 is a trivial but useful result. It follows
452 from Definition 5 and the fact that the aperiodic autocorrelation
453 of a single point is always the discrete delta function. By employing
454 Lemma 1, Theorem 3, and Theorem 4, it is possible to design com-
455 plementary arrays of various support Ω.
456 Corollary 1 For an arbitrary set Ω on a lattice, there exists at
457 least one complementary array set with support Ω for any orderM
458 such that M ≥ jΩj.
459 Remark 7 [Augmentation using Theorem 4] Due to Theorem
460 4, we let M̃ > M for practical purposes. For example, we choose
461 M̃ � 2m (for a positive integer m) such that U is a 
1
462 Hadamard matrix and the growth of alphabet (N ) could be well
463 controlled. We call this “augmentation” procedure. Augmentation
464 is important, because it is often desirable to reduce the size of the
465 alphabet, and thus the cost of practical implementations. The fol-
466 lowing design is an example of augmentation.
467 Design 4 We use several basic arrays to compose a smile face
468 shown in Fig. 14. The colors indicate different basic complemen-
469 tary array sets: the two green arrays (at the lower and upper boun-
470 daries) form a basic array set with parameters �M;N ; L� �
471 �2; 2; 8�. So do the brown ones (at the lower-left and upper-right
472 boundaries) and cyan ones (at the lower-right and upper-left boun-
473 daries). The two blue arrays (at the lower and upper boundaries)
474 form a basic array set with �M;N ; L� � �2; 2; 4�. The two yellow
475 arrays (single points at the lower and upper boundaries) form a
476 basic array set with �M;N ; L� � �2; 1; 1�. The three black arrays
477 (the eyes and nose) form a basic array set with �M;N ; L� �
478 �3; 3; 3� (Fig. 12); so do the three red ones (part of the mouth).

479The four purple arrays (the rest part of the mouth) form a basic
480array set with parameters �M;N ; L� � �4; 2; 3�, which could be
481obtained by applying Theorem 4 with Remark 5 and M̃ � 4 to a
482set of three single-point arrays. By applying Remark 4 and Theorem
4833 to the 20 arrays, a smile design with �M;N ; L� � �20; 60; 88�
484could be obtained. Due to Remark 7, another smile design with
485�M;N ; L� � �32; 6; 88� could be obtained.

486H. Design for Infinitely Large Hexagonal Arrays

487By choosing a proper seed and growth scheme, we are able to
488design infinitely large hexagonal arrays. The following is an
489example. We first design a complementary array set with
490M � 7, as a seed.
491Design 5 The union of Design 1 with design parameters
492�M;N ; L� � �4; 2; 7� and Design 2 with �M;N ; L� �
493�3; 3; 7� is a design with �M;N ; L� � �4� 3; lcm�2; 3�; 7� �
494�7; 6; 7� (Fig. 5), based on Remark 4.
495Design 6 By repeated applications of Theorem 3 with U �
496F 7 to Design 5, we obtain a design with parameters �M;N ; L� �
497�7; 42; 7l� for any positive integer l. The design is illustrated in
498Fig. 15, where the colors indicate the process of “growth.” In fact,
499applying Theorem 3 to Design 5 once (with Remark 3 conditions),
500we obtain a larger array set with �M;N ;L���7;lcm�6;7�;7×7��
501�7;42;72�. Figure 15(a) illustrates how the seven arrays of
502size 7 (indicated by different colors) are combined to form larger
503arrays. Similarly, applying Theorem 3 to the �M;N ; L� �
504�7; 42; 72� design once, we obtain a larger array set with
505�M;N ;L� � �7; lcm�42;7�;7 × 72� � �7;42;73�. Figure 15(b)
506illustrates how the seven arrays of size 72 (indicated by different
507colors) are combined to form larger arrays. Further applications
508of Theorem 3 will not increase M , N , but will increase L.
509As an alternative, the following design is also for a 7l-point
510hexagonal array, but with different elements.
511Design 7 We keep applying Theorem 3 with U � F 7 to a
512single-point array, e.g., with entry 1, we obtain a design with
513parameters �M;N ; L� � �7; 7; 7l� for any positive integer l.
514To see how it works, first consider a complementary array set with
515�M;N ; L� � �1; 1; 1� (a single-point array). Taking the union of
516seven such array sets as in Remark 4 leads to an array set with
517�M;N ; L� � �7; 1; 1�. Then, applying Theorem 3 once leads
518to an array set with �M;N ; L� � �7; lcm�7; 1�; 7 × 1� �
519�7; 7; 7�. Further applications of Theorem 3 will increase L,
520but not M , N . The design could also be illustrated by Fig. 15.

5213. URA, HURA, AND MURA BASED ON
522PERIODIC AUTOCORRELATION

523In this section, we review related works on URAs, including
524hexagonal uniformly redundant arrays (HURAs) and modified
525uniformly redundant arrays (MURAs).

526A. URA

527We first introduce the concept of periodic autocorrelation
528and “pseudonoise” that are important to the design of URAs.
529Definition 6 Let C � fC �i1; � � � ; in�g be an infinite array
530on an integer lattice, which satisfies

C �i1; � � � ; in� � C �I 1; � � � ; I n�;
F14:1 Fig. 14. Smile design, with �M;N ; L� � �20; 60; 88� (without
F14:2 augmentation) or (32, 6, 88) (with augmentation).
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531 for all ij ∈ Z and ij ≡ I j mod Lj, j � 1; 2; � � � ; n, where
532 L1; � � � ; Ln; I 1; � � � ; I n ∈ N and �I1; � � � ;I n�∈ �0;L1−1�× � � �×
533 �0;Ln−1�. The finite array within �0; L1 − 1� × � � � × �0; Ln − 1�,
534 denoted by c, is called the basic array. C is called the periodic ex-
535 tension of s. The periodic autocorrelation function of C (or c) is

AC �v1;���;vn��
X

i1∈ �0;L1−1�;
���;

in∈ �0;Ln−1�

C �i1;���;in�C �i1�v1;���;in�vn�;

536 v1; � � � ; vn ∈ Z. The periodic cross correlation between two arrays
537 are similarly defined.
538 A section of an infinite array C would be a valid URA aper-
539 ture, if there exists a finite array D such that C 	 D− is a peri-
540 odic extension of the discrete delta function. For a detailed
541 discussion about the benefits and implementations of periodic
542 extension, please refer to [7].
543 Definition 7 An array of size L1 × � � � × Ln is a pseudonoise
544 (PN) array if

545 (1) it is f
1g-binary;
546 (2) all out-of-phase correlations are −1, i.e., AC �v1; � � � ;
547 vn� � −1, where v1; � � � ; vn ∈ Z and vj ≢ 0mod Lj for at
548 least one j ∈ f1; 2; � � � ; ng.
549 In 1967, Calabro and Wolf [12] showed that a class of
550 two-dimensional PN arrays could be synthesized from quad-
551 ratic residues. The arrays are of size p1 × p2, where p1, p2
552 are any prime numbers satisfying p2 − p1 � 2,

D�i1; i2� �
8<
:

−1 i2 ≡ 0mod p2
1 i1 ≡ 0mod p1; i2 ≢ 0mod p2
�i1∕p1��i2∕p2� otherwise

;
553

554

555where �i∕p�; i ∈ Z is Legendre operator:

�i∕p� �
8<
:

0 i ≡ 0mod p
1 ∃x ≢ 0mod p; s:t: i ≡ x2 mod p
−1 otherwise:

556In 1978, following from the above result, Fenimore and
557Cannon [7] designed C and D such that C 	 D− is a periodic
558extension of the discrete delta function. The design is given
559below, where �p1; p2� is a twin prime pair. The coding array
560is C :

C �i1; i2� �

8>><
>>:

1 �i1∕p1��i2∕p2� � 1
0 i2 ≡ 0mod p2
1 i1 ≡ 0mod p1; i2 ≢ 0mod p2
0 otherwise:

(12)

561The decoding array of C is D−, where D is

D�i1; i2� �
�
1 ifC �i1; i2� � 1
−1 ifC �i1; i2� � 0:

562It is shown that

C 	 D− � p1p2 − 1
2

δ�r� �within one period�: (13)

563URAs can also be designed from maximal-length shift-
564register sequences or m-sequences [39]. The m-sequence is an-
565other class of PN sequences, which have lengths n � 2k − 1
566with k being any positive integer. They are sometimes referred
567to as “PN sequences” [40]. In 1976, MacWilliams and Sloane
568[40] showed how to obtain PN arrays from m-sequences. Let S
569be an m-sequence of length n � 2k − 1. If n � n1n2 such that
570n1 and n2 are relatively prime, a PN array, denoted by H, is
571designed below,

F15:1 Fig. 15. Complementary array set with parameter �M;N � � �7; 42; 7l� (Design 6), or �M;N � � �7; 7; 7l� (Design 7) for any positive integer
F15:2 l. (a) Illustration of one of the seven arrays of size 72 obtained as a result of applying Theorem 3 to a complementary array set of seven arrays of size 7
F15:3 (indicated by different colors) once. (b) Illustration of one of the seven arrays of size 73 obtained as a result of applying Theorem 3 to a com-
F15:4 plementary array set of seven arrays of size 72 (indicated by different colors) once.
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H �i1; i2� � S�i�; (14)

572 where i ≡ i1 mod n1, 0 ≤ i1 < n1, and i ≡ i2 mod n2, 0 ≤ i2 <
573 n2. We note that when sum �H � � −1 [40, Property IP-IV*],
574 we can design a URA with coding array C � �−H � J�∕2 and
575 decoding array D � −H − on integer lattices, where J is a unit
576 array, i.e., with all elements equal to one.

577 B. HURA

578 In 1985, Finger and Prince [16] designed a class of linear
579 URAs, i.e., sequences C and D such that C 	 D is a periodic
580 extension of the discrete delta function. The design is based on
581 PN sequences, which in turn come from quadratic residues.
582 Then, by mapping linear sequences onto hexagonal lattice,
583 they proposed the HURAs. In the first step, they constructed
584 the following sequence of length p, where p ≡ 3mod 4 is a
585 prime:

D�i� �
�
1 if i � 0
−�i∕p� otherwise:

586 Let C � �D� J�∕2. Then the following identity holds:

C 	 D− � p� 1

2
δ�r� �within one period�: (15)

587 In the second step, they map the sequence D onto a hexagonal
588 lattice,

H �i1e1 � i2e2� � D�i1 � τi2�; (16)

589 where τ is an integer to be chosen. H is called the Skew–
590 Hadamard URA. It is easy to see that the correlation between
591 H and �H � J�∕2 is a multiple of the discrete delta function,
592 just like the one-dimensional case.
593 As to the choice of lattice and τ, it is well stated by [16] that
594 “The freedom available in this procedure rests in the choice of
595 the lattice, the choice of the order p, and the choice of the
596 multiplier τ. The lattice type will determine what symmetries
597 can occur � � � The multiplier τ determines the periods of the
598 URA and hence the shape of the basic pattern.” Furthermore,
599 HURAs are those with hexagonal basic patterns, when the lat-
600 tice is chosen to be hexagonal. The qualified p is either 3 or
601 primes of the form 12k � 1 [16].
602 Besides the fact that HURAs are based on hexagonal lattices,
603 they are antisymmetric upon 60 deg rotation. This property
604 provides for effective reduction of background noise [1,2].
605 Due to similar reasoning, the designs proposed in Section 2
606 also obtain robustness against background noise.

607 C. MURA

608 It has been shown that PN sequences, together with the URAs
609 and HURAs that are based on them, could be made with prime
610 lengths of the form 4k � 3. Gottesman and Fenimore [17]
611 proposed the MURAs, which further increased the available
612 patterns for CAI. MURAs exist in lengths p � 4k � 1, where
613 p is a prime.
614 The design of MURAs also starts with a sequence D, which
615 is then mapped onto a hexagonal lattice, following the same
616 procedure as HURAs. Recalling URA and HURA designs
617 from Subsections 3.A and 3.B, we design using the following
618 procedure:

619Step 1. Let D be a PN sequence (array);
620Step 2. Let the coding array C be �D� J�∕2, and the
621decoding array be D−;
622Step 3. (optional) We map sequences onto a two-
623dimensional lattice [see Eqs. (14) and (16)].
624However, the design of MURAs is less straightforward, be-
625causeD is not a PN sequence and C ≠ �D� J�∕2. One way to
626design MURA sequences is

C �i� �

8>><
>>:

0 i ≡ 0mod p

1 ∃x ≢ 0mod p; s:t: i ≡ x2 mod p

0 otherwise

;

D�i� �

8>><
>>:

1 i ≡ 0mod p

1 C �i� � 1; i ≢ 0mod p

−1 otherwise:

627It is easy to verify that for any v ≢ 0mod p, we have

Xp−1
i�0

C�i�D�i � v� � 0: (17)

628Gottesman and Fenimore [17] also gave a class of MURAs
629for integer lattices. The coding array is the same as Eq. (12),
630except for a change of the size: p1 � p2 � p. The decoding
631array is D−, where

D�i1; i2� �
8<
:

1 i1 � i2 ≡ 0mod p
1 C �i1; i2� � 1; i1 � i2 ≡ 0mod p
−1 otherwise:

6324. NEW URA CONSTRUCTIONS

633A. URA from Periodic Complementary Sequence Set

634In this section, we first briefly summarize some similarities and
635differences between the aperiodic-based and periodic-based de-
636signs of CAI, and then propose a new design framework that is
637based on periodic autocorrelation.
638In the aperiodic case, the elements of arrays are assumed to
639extend only over some finite area and be zero outside that area.
640This fact provides great convenience for the design of comple-
641mentary array sets/banks, since several arrays could be easily
642concatenated while maintaining the unimodular alphabet dur-
643ing the “growth” process. In addition, the concept of “bank”
644and a growth scheme make the aperiodic-based designs more
645flexible. For example, we have shown how to make CAI aper-
646ture with arbitrary patterns. In the periodic case, the arrays were
647assumed to be periodic and infinite in extent. The resulting
648correlations are calculated over a full period. The usual way
649to design is to first design sequences with good autocorrelation
650property, e.g., pseudonoise, and then map them onto arrays. As
651to practical implementations, periodic-based designs often re-
652quire the physical coding aperture to be periodic extensions of
653some basic patterns to mimic the periodicity, while aperiodic-
654based ones do not.
655Despite their differences in principles and implementations,
656the idea of “complementary” can also be associated with peri-
657odic correlations, leading to the following concept that is sim-
658ilar to complementary array sets in Section 2.
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659 Definition 8 A set of arrays with the same basic pattern is a
660 periodic complementary array set (PCAS), if the sum of their
661 periodic autocorrelations is a periodic extension of the discrete delta
662 function. A one-dimensional PCAS is also referred to as a
663 periodic complementary sequence set (PCSS). The notation “design
664 parameters” �M;N � or �M;N ; L� is similarly defined as in
665 Subsection 2.D.
666 As discussed before, URAs (including HURAs) require the
667 lengths of sequences to be prime numbers or 2k − 1, so the pos-
668 sible sizes of URA arrays are quite limited. However, the above
669 concept produces more admissible lengths, offering more
670 choices in selecting an aperture. For example, we can construct
671 the following URA sequence of length 6.
672 Example. PCSS with parameter �M;N ; L� � �4; 2; 6�:

S1 � f1; −1; −1; −1; −1; −1g;
S2 � f1; 1; 1; 1; −1; −1g;
S3 � f−1; 1; −1; 1; −1; −1g;
S4 � f−1; −1; 1; 1; −1; 1g:

673 Then, the sequences are mapped onto a two-dimensional
674 lattice, following procedures similar to Eqs. (14) and (16).
675 Now a natural question that arises is: for a given alphabet, what
676 are the possible lengths for which there exists a PCSS? and how
677 to design them? This will be addressed in the remaining
678 sections.
679 A natural way to construct a PCSS is to synthesize them
680 from existing designs. Some synthesis methods have been pro-
681 vided for binary PCSS in [41], and they could be easily ex-
682 tended to the nonbinary case. In the following two sections,
683 we propose some different synthesis methods.
684 At the end of this subsection, there are two remarks worth
685 mentioning. First, the concept of PCSS is not new. It was once
686 referred to as “periodic complementary sequences” or “periodic
687 complementary binary sequences” [41]. To the best of our
688 knowledge, prior works mainly focused on the binary case.
689 One possible reason is its intimate relationship with cyclic dif-
690 ference sets [42]. Second, complementary sequence sets are
691 subclasses of PCSS due to the following fact,

AS
p�v� � AS

a �v� � AS
a �v − L� ∀ v ∈ Z; 0 ≤ v < L; (18)

692 where S is a sequence of length L, and Ap�·� and Aa�·� respec-
693 tively denote periodic and aperiodic autocorrelations.

694 B. Synthesis Methods from the Chinese Remainder
695 Theorem

696 1. PCAS Synthesized from PCSS and Perfect Sequence

697 A sequence is called a “perfect sequence” if its periodic auto-
698 correlation is a periodic extension of the discrete delta function.
699 Consider a PCSS fSmgMm�1 of length s, and a perfect sequence
700 S of length t . We can then construct a PCAS fCmgMm�1 of size
701 s × t (or similarly t × s):

Cm�i; j� � Sm�i�S�j�; m � 1; � � � ; M; i; j ∈ Z: (19)

702 Proof: The periodic autocorrelation of Cm satisfies

ACm�v1; v2� � ASm�v1�AS�v2�:

703Thus, for any v1, v2 ∈ Z, �v1; v2� ≠ �0; 0�,
XM
m�1

ACm�v1; v2� �
�XM

m�1

ASm�v1�
�
AS�v2� � 0:

7042. PCSS Synthesized from PCSS and Perfect Sequence

705Consider a PCSS fSmgMm�1 of length s, and a perfect sequence S
706of length t . Also assume that s and t are coprime. We can then
707construct a PCSS fS̃mgMm�1 of length st ,

S̃m�i� � Cm�imod s; imod t �; i ∈ Z; (20)

708where fCmg is given in Subsection 4.B.1.
709Proof: Equation (20) provides a one-to-one mapping
710between a sequence and an array, guaranteed by the Chinese
711remainder theorem. The mapping is linear so that the autocor-
712relation function is preserved, i.e.,

AS̃m�v� � ACm�vmod s; vmod t�;
713and thus the sequence set fS̃mgMm�1 is complementary.

7143. PCSS/PCAS from Two PCSSs with Coprime Lengths

715Consider a PCSS fSm1
gM 1
m1�1 of length s, and another PCSS

716fTm2
gM 2
m2�1 of length t . We can then construct a PCAS

717fC �m1 ;m2�g of size s × t,

C �m1 ;m2��i; j� � Sm1
�i�Tm2

�j�; (21)

718where m1 � 1; � � � ;M 1, m2 � 1; � � � ;M 2, and i; j ∈ Z.
719Further, if s and t are coprime, we can construct a PCSS of
720length st.
721Proof: For a given 1 ≤ m2 ≤ M 2,

XM 1

m1�1

AC �m1 ;m2� �v1; v2� �
�
s · ATm2 �v2� v1 � 0
0 otherwise:

722Thus, for v1; v2 ∈ Z; �v1; v2� ≠ �0; 0�,
XM 2

m2�1

XM 1

m1�1

AC �m1 ;m2� �v1; v2� �
XM 2

m2�1

�XM 1

m1�1

AC �m1 ;m2� �v1; v2�
�
� 0:

723If s and t are coprime, a PCSS could be designed using the
724mapping given in Eq. (20).
725Remark 8 This result is stronger than that given in [41,
726Theorem 6], since it does not require the number of sequences
727to be relatively prime.

7284. PCAS Constructed from Another PCAS of a Different
729Size

730Assume that we have a PCAS of size s × t synthesized
731from PCSS fSm1

gM 1
m1�1 and fTm2

gM 2
m2�1 using the method in

732Subsection 4.B.3. Suppose that gcd�s; t� ≠ 1, but s � s1s2
733for some s1 ≠ 1 and s2 ≠ 1, where gcd�s1; s2� � gcd�s2; t� � 1.
734A PCAS of size s1 × s2t could be designed by first mapping the
735PCSS fSm1

gM 1
m1�1 to a PCAS of size s1 × s2 in a way similar to

736Eq. (19), then constructing a three-dimensional PCAS of size
737s1 × s2 × t in a way similar to Eq. (19), and finally mapping the
738latter two dimensions to a single dimension in a way similar to
739Eq. (20), resulting in a PCAS of size s1 × s2t.
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740 C. Synthesis via Unitary Matrices

741 Theorem 5 For any positive integer s, there exists at least one
742 PCSS with design parameters �M;N ; L� � �pn; p1 � � � pn; s�,
743 where p1 < � � � < pn are all the distinct prime divisors of s.
744 For any positive integers s1; � � � ; sk, there exists at least one
745 PCAS of size s1 × � � � × sk with design parameters �M;N ; L� �
746 �pn; p1 � � � pn; st�, where p1 < � � � < pn are all the distinct prime
747 divisors of s1 � � � sk.
748 The proof is included in Appendix C.
749 Remark 9 Theorem 5 gives the construction for PCAS of an
750 arbitrary size, where the alphabet is determined by the product of
751 the distinct prime divisors of the size, and the order is the largest
752 prime divisor. From the proof of Theorem 5, the result also holds for
753 aperiodic autocorrelations.
754 A natural question that arises is how tight the result in Theorem
755 5 is. Specifically, is there any solution whose orderN is less than pn?
756 This is clearly not the case for Golay complementary sequence pair,
757 where the size s is a power of 2. Although we were not able to
758 answer this question in general, we were able to prove the following
759 results.
760 Theorem 6 For any prime number p, a p-regular set, denoted
761 by RC �p�, is defined to be a set of p distinct unimodular complex
762 numbers that form the vertices of a uniform polygon in the complex
763 plane. Let N � pr11 � � � prnn , rj ≥ 1 be a positive integer with
764 distinct prime divisors pj; j � 1; � � � ; n. Consider M variables
765 x1; � � � ; xM that take values in the set of N th root of unity.
766 Suppose that

PM
m�1 xm � 0.

767 1. If n ≤ 2, the set fxmgMm�1 can be written as the unions of
768 pk-regular configurations, i.e.,

fx1; � � � ; xM g � ⋃
f�k;j�jck>0;k�1;���;n;j�1;���;ckg

RC �pk�
j : (22)

769 2. If n ≤ 2, M can be written as

M � c1p1 � � � � � cnpn; (23)

770 where c1; � � � ; cn are nonnegative integers.

771 The proof is given in Appendix D.
772 Remark 10 Consider an aperiodic complementary array set
773 fSmgMm�1 with design parameters �M;N ; L�. Then we have
774

PM
m�1 Sm�0�Sm�L − 1� � 0. Assume that the alphabet isN -phase,

775 where N � pr11 (n � 1) or N � pr11 p
r2
2 with p1 and p2 distinct

776 primes (n � 2). Applying Theorem 6, Eq. (23) implies that
777 (1) M ≥ p1 if n � 1; (2) M ≥ minfp1; p2g if n � 2. Due to
778 similar reasons,M � 7 in Design 7 is tight wheneverN is a power
779 of 7.

780 5. SIMULATION RESULTS

781 We have performed computer simulations to demonstrate a
782 multichannel CAI system and a classical URA-based one.
783 The multichannel CAI system that we select comes from
784 Design 2. Admittedly, in practice we only need four pairs of
785 aperture arrays with f−1; 1g-alphabet. But the coded images
786 contain negative entries, which are not straightforward to
787 illustrate by simulation (we used MATLAB software). We thus
788 provide an alternative approach, which relies on the follow-
789 ing lemma.

790Lemma 2 Suppose that f�Cm;Dm�gMm�1 is a complementary
791bank with alphabet A � f−1; 1g and it satisfies PM

m�1 Dm � 0.
792Then f�C̃m; Dm�gMm�1 is a complementary bank, where
793C̃m � �Cm � J�∕2. m � 1; � � � ; M . Here, 0 and J respectively
794denote the array of zeros and the array of ones, whose supports are
795the same as Dm.
796Proof 2 The proof follows immediately from

XM
m�1

C̃m 	 D−
m �

XM
m�1

1

2
�Cm � J� 	 D−

m

� 1

2

XM
m�1

Cm 	 D−
m � 1

2
J 	

�XM
m�1

Dm

�−

� 1

2

XM
m�1

Cm 	 D−
m: (24)

797The above result gives a general method to design a mask with
798simple closing/opening pinholes (the elements of C are either 0
799or 1). In practice, the method is of interest on its own right, but
800we do not elaborate here. As a corollary of Lemma 2, it is easy to
801see that if fCmgMm�1 is a complementary array set with alphabet
802A � f−1; 1g, then��

1

2
�Cm � J�; Cm

��
M

m�1

⋃
��

1

2
�−Cm � J�; −Cm

��
M

m�1

803is a complementary bank.
804Following Design 2 and the above result, we obtain the
805following eight-channel CAI f�Cm;Dm�g8m�1, each with a mask
806as shown in Fig. 5. The coding arrays are

fC1�k�g6k�0 � f1; 1; 0; 1; 1; 0; 1g;
fC2�k�g6k�0 � f0; 1; 1; 0; 0; 1; 1g;
fC3�k�g6k�0 � f1; 1; 0; 1; 0; 1; 1g;
fC4�k�g6k�0 � f1; 1; 1; 0; 1; 0; 1g;
fC5�k�g6k�0 � f0; 0; 1; 0; 0; 1; 0g;
fC6�k�g6k�0 � f1; 0; 0; 1; 1; 0; 0g;
fC7�k�g6k�0 � f0; 0; 1; 0; 1; 0; 0g;
fC8�k�g6k�0 � f0; 0; 0; 1; 0; 1; 0g:

807If we choose the element labeled 0 to be the origin, the decod-
808ing arrays are

fD1�k�g6k�0 � f1; 1; −1; 1; 1; −1; 1g;
fD2�k�g6k�0 � f−1; −1; 1; 1; 1; 1; −1g;
fD3�k�g6k�0 � f1; −1; 1; 1; 1; −1; 1g;
fD4�k�g6k�0 � f1; 1; −1; 1; 1; 1; −1g;
fD5�k�g6k�0 � f−1; −1; 1; −1; −1; 1; −1g;
fD6�k�g6k�0 � f1; 1; −1; −1; −1; −1; 1g;
fD7�k�g6k�0 � f−1; 1; −1; −1; −1; 1; −1g;
fD8�k�g6k�0 � f−1; −1; 1; −1; −1; −1; 1g:

809Figure 17 illustrates how a source object is coded and decoded
810in a multichannel system. The source object is a 130 × 130

2
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811 pixels “camera man” image and the distance between two pin-
812 holes is 60 pixels. The gray level is normalized to be in the range
813 of [0, 255]. It is worth mentioning that the bright (white) part
814 of the images produced by MATLAB (as shown in Figs. 16–18)
815 corresponds to low light intensity in the real world.
816 The second simulation is for URAs (shown in Fig. 18). It
817 uses the same source object and following aperture,"

0 1 1 1 1
0 0 1 1 0
0 1 0 0 1

#
; (25)

818 which is a 3 × 5 array that comes from the m-sequence of length
819 15 (see Subsection 3.A for details). In the implementation, we
820 use the arrangement suggested by [7], i.e., a 6 × 10 aperture
821 composed of a periodic extension of the basic 3 × 5 patterns
822 (with 32 open pinholes), and a 3 × 5 decoding array.
823 Next, we repeat the experiment by taking noises into ac-
824 count. We first assume additive noises that follow independent
825 Poisson distributions. In other words, the recorded image at the
826 kth pinhole of the coding aperture is O� nk, where O and nk
827 respectively denote the array of source image and noises, and
828 each pixel nk �i; j� is an independent Poisson random variable
829 with rate (expectation) λ. For each λ, we obtain the recon-
830 structed 130 × 130 images from the multichannel CAI system
831 [the bottom-right of Fig. 17(b)] and from the URA-based
832 CAI system [the center of Fig. 18(b)], denoted respectively
833 by Ôm, Ôu. Then we compute the log of SNR ratio
834 sm � log�‖O‖2F∕‖Ôm − O‖2F �, su � log�‖O‖2F∕‖Ôu − O‖2F �
835 (where ‖ · ‖F denotes the Frobenius norm) based on the aver-
836 age of 20 independent repetitions. (In the computation, we
837 have normalized the pixel values to the range [0, 1], with 0
838 and 1 respectively denoting the lowest intensity and the highest
839 intensity.) We repeat the experiment for λ � 10; 20; 30; 40; 50,
840 and obtain sm∕su � 6.1∕6, 5/4.8, 4.3/4.2, 3.8/3.7, 3.5/3.3, re-
841 spectively. This result shows that the eight-channel CAI with

84228 open pinholes achieves better SNR gain compared to the
843URA with 32 open pinholes.
844It is usually more reasonable to assume that the noise is sig-
845nal dependent, especially in our “camera man” example where
846there is a significant part of low-intensity background. We thus
847repeat the experiment by assuming photon noise, also known as
848Poisson noise. In other words, the recorded image at the kth
849pinhole of the coding aperture is O� nk, whose �i; j�th pixel is
850an independent Poisson random variable with rate O�i; j�.
851We repeat the experiment 20 times and obtain the average
852log SNR sm � 6.2920, su � 5.2781. The result shows that
853the eight-channel CAI achieves much better SNR even though

F16:1 Fig. 16. Comparison of (a) the source image, (b) the image from a
F16:2 single pinhole, (c) the image from the multichannel CAI system, and
F16:3 (d) the image from the URA-based CAI system, under Poisson noises.

F17:1Fig. 17. Demonstration of the encoding and decoding process of a
F17:2multichannel CAI system. (a) The upper-left image, “cameraman,” is
F17:3the source image. From the upper-middle to the bottom-right, the
F17:4images are the coded images from apertures C1,� � �, C8 in each chan-
F17:5nel. (b) From the upper-left to the bottom-middle, the images are the
F17:6decoded results from D1,� � �, D8 in each channel. The bottom-right
F17:7image is the reconstructed image, coming from the addition of the
F17:8eight decoded results.

3
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854 it uses only 28 open pinholes, compared with the URA-based
855 design. For illustration purpose, Fig. 16 plots the source image,
856 the recorded image from a single pinhole, the reconstructed
857 image from the eight-channel CAI system, and the image from
858 the URA-based one, under signal-dependent Poisson noises in
859 one experiment.

860 6. CONCLUSION

861 In this work, two classes of coded aperture imaging systems
862 are studied that are constructed based on aperiodic or periodic
863 correlations. For the first case, we extended the concept of
864 Golay complementary array pairs to complementary array sets
865 and complementary array banks on lattices. Under the general
866 framework, we provided methods and examples for the design
867 of the complementary arrays. The findings not only lead to
868 more flexible and robust designs of the coded aperture imaging
869 systems, but also bring new theoretical insights. For the second
870 case, we reviewed the state-of-the-art URA designs and further
871 proposed some new classes of the URA designs. Simulation re-
872 sults are provided to demonstrate our proposed scheme.

873 APPENDIX A: PROOF OF THEOREM 1

874 The following lemmas are helpful to the proof of Theorem 1.
875 Lemma 3 If complex numbers α1; � � � ; α4 are unimodular and
876 satisfy

P
4
k�1 αk � 0, then they contain two opposite pairs.

877 Proof of Lemma 3:
878 Let y � α1 � α2, z � �−α3� � �−α4�, then y � z. Because
879 jα1j � jα2j � 1, y is on the bisector of α1 and α2. Similarly, z is
880 on the bisector of −α3 and −α4. Since y � z, we have α1 � −α3
881 or α1 � −α4.
882 Lemma 4 If roots of unity α1, α2 satisfy jα1 − 2α2j � 1,
883 then α1 � α2.
884 Proof of Lemma 4:
885 The identity 1 � �α1 − 2α2��ᾱ1 − 2ᾱ2� � 1 − 2�α1ᾱ2 �
886 ᾱ1α2� � 4 implies α1ᾱ2 � 1, i.e., α1 � α2.
887 Proof of Theorem 1:
888 Assume that there exists a complementary array pair.
889 Writing down (2) explicitly we obtain the following system
890 of equations consisting of nine equations and 14 variables
891 fxkg6k�0 ∪ fykg6k�0:

x1x̄3 � x6x̄4 � y1ȳ3 � y6ȳ4 � 0; (A1)

x0x̄1 � x3x̄2 � x5x̄6 � x4x̄0 � y0ȳ1 � y3ȳ2 � y5ȳ6 � y4ȳ0 � 0;

(A2)

x1x̄4 � y1ȳ4 � 0; (A3)

x2x̄4 � x1x̄5 � y2ȳ4 � y1ȳ5 � 0; (A4)

x0x̄2 � x6x̄1 � x4x̄3 � x5x̄0 � y0ȳ2 � y6ȳ1 � y4ȳ3 � y5ȳ0 � 0;

(A5)

x2x̄5 � y2ȳ5 � 0; (A6)

x3x̄5 � x2x̄6 � y3ȳ5 � y2ȳ6 � 0; (A7)

x0x̄3 � x1x̄2 � x5x̄4 � x6x̄0 � y0ȳ3 � y1ȳ2 � y5ȳ4 � y6ȳ0 � 0;

(A8)

x3x̄6 � y3ȳ6 � 0: (A9)

892We only need to prove that the above system of equations have
893no solution on the unit circle. Assume without loss of generality
894that x1 � y1 � 1. After simplifying Eqs. (A3), (A1), (A6), and
895(A9) we have

y4 � −x4; (A10)

y3 � −�x3 � �x̄6 − x̄4�x4� � −x3 − x̄6x4 � 1; (A11)

y5 � −x̄2x5y2; (A12)

y6 � −x̄3x6y3: (A13)

896From Eq. (A11), we obtain y3 � x3 � x̄6x4 − 1 � 0. Due to
897Lemma 3, we have three cases to consider:
898Case A: y3 � 1, x4 � −x3x6; Case B: x3 � 1, y3 � −x4x̄6;
899Case C: x6 � x4, y3 � −x3.
900Case A: y3 � 1, x4 � −x3x6
901From Eqs. (A10), (A12), and (A13), we eliminate variables
902x4, y3, y4, y5, y6 in Eqs. (A4) and (A7) and obtain

−x2x̄3x̄6 � x̄5 � x̄3x̄6y2 − x2x̄5ȳ2 � 0; (A14)

x3x̄5 � x2x̄6 − x2x̄5ȳ2 − x3x̄6y2 � 0: (A15)

903We write Eqs. (A14) and (A15) as

x5x̄3�x2 − y2� � x6�1 − x2ȳ2�; (A16)

x5�x̄3 − x̄2y2� � x6�x̄3ȳ2 − x̄2�: (A17)

904If x2 ≠ y2, Eq. (A16) gives

x5 � x3
1 − x2ȳ2
x2 − y2

x6 � −x3ȳ2x6:

905If x2 ≠ x3y2, Eq. (A17) gives

x5 �
x̄3ȳ2 − x̄2
x̄3 − x̄2y2

x6 � ȳ2x6:

906So there are four cases to consider that further eliminate the
907variables.
908Case A1: x5 � −x3ȳ2x6, x5 � ȳ2x6
909Clearly, x3 � −1. Eliminating variables in Eqs. (A2) and
910(A8) we obtain

�x0 − x̄2 − x̄2 − x6ȳ0� � �ȳ2 � x6x̄0 � y0 � ȳ2� � 0;

− �x0 − x̄2 − x̄2 − x6ȳ0� � �ȳ2 � x6x̄0 � y0 � ȳ2� � 0;

911which is equivalent to

x0 − x̄2 − x̄2 − x6ȳ0 � 0; (A18)

ȳ2 � x6x̄0 � y0 � ȳ2 � 0: (A19)

912We further obtain

y0 � x6�x̄0 − 2x2�; (A20)

y2 � x̄6�x̄2 − x0�: (A21)

913Equation (A20) gives jx̄0 − 2x2j � 1, which further implies
914that x̄0 � x2. This is a contradiction to Eq. (A21).

4
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915 Case A2: x2 � y2, x5 � ȳ2x6
916 We only need to check the validity of Eqs. (A2), (A5), and
917 (A8). We write them in terms of five variables x0, x2, x3, x6, y0:

x0 � x3x̄2 � x̄2 − x3x6x̄0 � y0 � x̄2 � x̄2x3 � x3x6ȳ0 � 0;

(A22)

x0x̄2 � x̄2x6x̄0 � y0x̄2 − x̄3x6 � x3x6 − x̄2x6ȳ0 � 0;

x0 � x3x̄2 − x̄2 � x3x6x̄0 � y0x3 � x̄2x3 − x̄2 − x6ȳ0 � 0:

(A23)

918 In fact, a contradiction can be obtained from Eqs. (A22) and
919 (A23). Taking the sum and difference of the two equations, we
920 obtain

�x3 � 1�y0 � �x3 − 1�x6ȳ0 � −4x̄2x3 − 2x0; (A24)

�x3 � 1�x6ȳ0 − �x3 − 1�y0 � −4x̄2 � 2x3x6x̄0: (A25)

921 If we have a valid solution �x2; x3; x0; y0; x6�, it is easy to see
922 that �ξ−1x2; x3; ξx0; ξy0; ξ2x6� is also a valid solution for any
923 unimodular complex number ξ. Therefore, we only need to
924 consider the case x6 � 1. Replacing x6 � 1 into Eq. (A25),
925 multiplying the equation with −x̄3, and then taking the con-
926 jugate, we obtain

−�x3 � 1�y0 − �x3 − 1�ȳ0 � 4x2x3 − 2x0: (A26)

927 Adding Eqs. (A24) and (A26) gives

x0 � �x2 − x̄2�x3: (A27)

928 From the identity 1 � jx0j � jx2 − x̄2jjx3j � jx2 − x̄2j, x2 is in
929 the form of ffiffiffi

3
p

2
δ1 �

i
2
δ2; δ1; δ2 ∈ f1; −1g: (A28)

930 Combining Eqs. (A28) and (A27) gives x0 � iδ2x3. Further-
931 more, Eq. (A24) is simplified to be

�x3 � 1�y0 � �x3 − 1�ȳ0 � −2
ffiffiffi
3

p
δ1x3: (A29)

932Equation (A29) implies that

2
ffiffiffi
3

p
� j�x3 � 1�y0 � �x3 − 1�ȳ0j ≤ jx3 � 1j � jx3 − 1j
≤ 2

ffiffiffi
2

p
;

933which is a contradiction.
934Case A3: x5 � −x3ȳ2x6, x2 � x3y2
935First, we rewrite Eqs. (A2) and (A8) in terms of x0, x3, x6,
936y0, y2:

x0 � 2ȳ2 − 2x3ȳ2 − x3x6x̄0 � y0 � x3x6ȳ0 � 0; (A30)

x0x̄3 � 2x̄3ȳ2 � 2ȳ2 � x6x̄0 � y0 − x̄3x6ȳ0 � 0: (A31)

937If we have a valid solution �y2; x3; x0; y0; x6�, it is easy to see
938that �ξ−1y2; x3; ξx0; ξy0; ξ2x6� is also a valid solution for any
939unimodular complex number ξ. Therefore, we only need to
940consider the case x6 � 1. By computing Eq. (A30) �x3.
941Eqs. (A31) and (A30) −x3. Eq. (A31) we obtain

�x3 � 1�y0 � �x3 − 1�ȳ0 � −4ȳ2 − 2x0; (A32)

−�x3 � 1�ȳ0 � �x3 − 1�y0 � −4x3ȳ2 − 2x3x̄0: (A33)

942Multiplying Eq. (A33) by x̄3, and then taking the conjugate, we
943obtain

−�x3 � 1�y0 − �x3 − 1�ȳ0 � −4y2 − 2x0: (A34)

944Adding Eqs. (A32) and (A34) we obtain

x0 � −�y2 � ȳ2�:
945Thus, y2 is in the form of

y2 �
1

2
δ1 �

ffiffiffi
3

p
i

2
δ2; δ1; δ2 ∈ f1; −1g:

946Furthermore,

x0 � −δ1;

�x3 � 1�y0 � �x3 − 1�ȳ0 � −2
ffiffiffi
3

p
δ2;

947which implies that 2
ffiffiffi
3

p
≤ 2

ffiffiffi
2

p
.

F18:1 Fig. 18. Demonstration of the encoding and decoding process of a URA-based CAI system: the coded aperture produces a cyclic version of the
F18:2 basic aperture pattern in (a), from which the source image is reconstructed in the center area in (b).
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948 Case A4: x2 � y2, x2 � x3y2
949 Similar to Case A1, Eqs. (A2) and (A8) imply

−�2x̄2 � x0� � y0; (A35)

x5x̄6 − x6�x̄0 � x2� � 0: (A36)

950 Equation (A35) implies that x̄2 � −x0, which is a contradiction
951 to Eq. (A36).
952 Case B: x3 � 1, y3 � −x4x̄6
953 From Eqs. (A4) and (A7), we obtain

�x̄5 − y2x̄4��1 − x2ȳ2� � 0; (A37)

�x2x̄6 � y2x̄4��1� x4x̄5ȳ2� � 0: (A38)

954 If y2 ≠ x4x̄5, Eq. (A37) gives x2 � y2. If x2 ≠ −x6x̄4y2,
955 Eq. (A38) gives x5 � −x4ȳ2. We therefore have the following
956 four cases to discuss.
957 Case B1: y2 � x4x̄5, x2 � −x6x̄4y2 � −x6x̄5
958 First, we rewrite Eqs. (A5) and (A8) in terms of x0, x4, x5,
959 x6, y0:

2x6 − x0x5x̄6 � 2x4 � x̄4x5y0 � x4x5x̄6ȳ0 � x̄0x5 � 0;

(A39)

2x̄4x5 � x0 − 2x5x̄6 − x̄4x6y0 � x4ȳ0 � x̄0x6 � 0: (A40)

960 If we have a valid solution �x0; y0; x4; x6; x5�, it is easy to see
961 that �ξx0; ξy0; ξ2x4; ξ2x6; ξ3x5� is also a valid solution for any
962 unimodular complex number ξ. Therefore, we only need to
963 consider the case x6 � 1. Taking x6 � 1 into Eqs. (A39)
964 and (A40), multiplying Eq. (A40) by −x̄5, and taking its
965 conjugate, we obtain

2 − x0x5 � 2x4 � x̄4x5y0 � x4x5ȳ0 � x̄0x5 � 0; (A41)

2 − x0x5 − 2x4 − x̄4x5y0 � x4x5ȳ0 − x̄0x5 � 0: (A42)

966 Adding Eqs. (A41) and (A42) gives

4 � 2x0x5 − 2x4x5ȳ0: (A43)

967 Because j2x0x5j � j2x4x5ȳ0j � 2, the only possibility is

x0x5 � 1; x4x5ȳ0 � −1: (A44)

968 Taking Eqs. (A44) into (A41) we obtain 2x4 � 0, which is a
969 contradiction.
970 Case B2: x2 � y2, x2 � −x6x̄4y2
971 Clearly, x6 � −x4. Because y3 � −x4x̄6 � 1, this case is
972 covered by Case A.
973 Case B3: y2 � x4x̄5, x5 � −x4ȳ2
974 Clearly, y2 � −x4x̄5. Because y2 � x4x̄5 � −y2, this case is
975 not possible.
976 Case B4: x2 � y2, x5 � −x4ȳ2 � −x4x̄2
977 First, we rewrite Eqs. (A2) and (A5) in terms of x0, x2, x4,
978 x6, y0:

2x̄2 − 2x̄2x4x̄6 � x0 � y0 � x4x̄0 − x4ȳ0 � 0; (A45)

2x4 � 2x6 � x0x̄2 � x̄2y0 − x̄2x4x̄0 � x̄2x4ȳ0 � 0: (A46)

979 If we have a valid solution �x2; x0; y0; x4; x6�, it is easy to see
980 that �ξ−1x2; ξx0; ξy0; ξ2x4; ξ2x6� is also a valid solution for any
981 unimodular complex number ξ. Therefore, we only need to
982 consider the case x4 � 1. Taking the conjugate of Eq. (A45),
983 multiplying Eq. (A46) by x̄2, and letting x4 � 1, we have

2x2 − 2x2x6 � x̄0 � ȳ0 � x0 − y0 � 0; (A47)

2x2 � 2x2x6 � x0 � y0 − x̄0 � ȳ0 � 0: (A48)

984Adding Eqs. (A47) and (A48), we obtain

4x2 � 2x0 � 2ȳ0 � 0: (A49)

985Because j4x2j � 4, j2x0j � j2ȳ0j � 2, the only possibility is

x0 � −x2; ȳ0 � −x2: (A50)

986Applying Eqs. (A47)–(A50) gives 2x2x6 � 0, which is a contra-
987diction.
988Case C: x6 � x4, y3 � −x3
989From Eqs. (A4) and (A7), we obtain

�x̄5 − x̄4y2��1 − x2ȳ2� � 0; (A51)

�x̄5x3 � x̄4y2��x2 � y2� � 0: (A52)

990If y2 ≠ x2, Eq. (A51) gives y2 � x4x̄5. If y2 ≠ −x2, Eq. (A52)
991gives y2 � −x3x4x̄5. So there are four cases to consider.
992Case C1: y2 � x2, y2 � −x3x4x̄5
993First, we rewrite Eqs. (A5) and (A8) in terms of x0, x2, x3,
994x4, y0:

2x4 � 2x̄3x4 � x̄2x0 � x̄2y0 − x̄2x3x4x̄0 � x̄2x3x4ȳ0 � 0;

(A53)

2x̄2 − 2x̄2x3 � x̄cx0 − x̄3y0 � x4x̄0 � x4ȳ0 � 0: (A54)

995If we have a valid solution �x2; x3; x0; y0; x4�, it is easy to see
996that �ξ−1x2; x3; ξx0; ξy0; ξ2x4� is also a valid solution for any
997unimodular complex number ξ. Therefore, we only need to
998consider the case x4 � 1. Taking the conjugate of Eq. (A54),
999multiplying it by x̄2, and letting x4 � 1, Eqs. (A53) and (A54)

1000give

2� 2x̄3 � x̄2x0 � x̄2y0 − x̄2x3x̄0 � x̄2x3ȳ0 � 0; (A55)

2 − 2x̄3 � x̄2x0 � x̄2y0 � x̄2x3x̄0 − x̄2x3ȳ0 � 0: (A56)

1001Adding Eqs. (A55) and (A56) gives

4� 2x̄2�x0 � y0� � 0: (A57)

1002Thus jx0 � y0j � 2, the only possibility is

x0 � y0 � −x2: (A58)

1003Applying Eqs. (A55)–(A58), we obtain 2x̄3 � 0, which is a
1004contradiction.
1005Case C2: y2 � x4x̄5, y2 � −x2
1006First, we rewrite Eqs. (A2) and (A5) in terms of x0, x2, x3,
1007x4, y0:

2x3x̄2 − 2x̄2 � x0 � y0 � x4x̄0 − x4ȳ0 � 0; (A59)

2x4 � 2x4x̄3 � x0x̄2 − y0x̄2 − x̄2x4x̄0 − x̄2x4ȳ0 � 0: (A60)

1008If we have a valid solution �x2; x3; x0; y0; x4�, it is easy to see
1009that �ξ−1x2; x3; ξx0; ξy0; ξ2x4� is also a valid solution for
1010any unimodular complex number ξ. Therefore, we only need
1011to consider the case x4 � 1. Taking the conjugate of Eq. (A60),
1012multiplying it by x̄2, and letting x4 � 1, Eqs. (A59)
1013and (A60) give

2x3x̄2 − 2x̄2 � x0 � y0 � x̄0 − ȳ0 � 0; (A61)

2x3x̄2 � 2x̄2 − x0 − y0 � x̄0 − ȳ0 � 0: (A62)
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1014 Subtracting Eqs. (A62) and (A61), we obtain

4x̄2 − 2�x0 � y0� � 0: (A63)

1015 Thus jx0 � y0j � 2, and the only possibility is

x0 � y0 � x̄2: (A64)

1016 Applying Eqs. (A61)–(A64), we obtain 2x3x̄2 � 0, which is a
1017 contradiction.
1018 Case C3: y2 � x4x̄5, y2 � −x3x4x̄5
1019 This case is covered by Case A, because x3 � −1,
1020 y3 � −x3 � 1.
1021 Case C4: y2 � x2, y2 � −x2
1022 This case is clearly not possible.

1023 APPENDIX B: PROOF OF THEOREM 2

1024 The proof follows a similar procedure to that of the proof of
1025 Theorem 1. The only difference is that the modulus of x0, y0
1026 are changed from one to zero. Related changes in the proof in
1027 Appendix A are listed below.
1028 Case A1: Eq. (A18) gives 2x̄2 � 0, which is a contradiction.
1029 Case A2: Eq. (A24) gives 4x̄2x3 � 0, which is a contra-
1030 diction.
1031 Case A3: Eq. (A32) gives 4ȳ2 � 0, which is a contradiction.
1032 Case A4: Eq. (A35) gives 2x̄2 � 0, which is a contradiction.
1033 Case B1: Eq. (A43) gives 4 � 0, which is a contradiction.
1034 Case B4: Eq. (A49) gives 4x2 � 0, which is a contradiction.
1035 Case C1: Eq. (A57) gives 4 � 0, which is a contradiction.
1036 Case C2: Eq. (A63) gives 4x̄2 � 0, which is a contradiction.

1037 APPENDIX C: PROOF OF THEOREM 5

1038 We prove the first part constructively. Using Eq. (18), we ob-
1039 serve that it suffices to construct an aperiodic complementary
1040 array set. Without loss of generality, assume that s �
1041 pq11 × pq22 � � � × pqnn is a prime factorization of s, where qj ≥ 1

1042 and pj’s are distinct for j � 1; � � � ; n. Let S�0� � fS�0�m gp1m�1

1043 be a set of p1 sequences each of which contains a single point
1044 1, i.e., S�0� has design parameters �M;N ; L� � �p1; 1; 1�.
1045 In the first iteration, we apply Theorem 3 to S�0� with U
1046 equal to the Fourier matrix F p1 while satisfying Remark 3
1047 conditions to obtain a (one-dimensional) complementary array
1048 set with �M;N ; L� � �p1; lcm�p1; 1�; p1 × 1� � �p1; p1; p1�.
1049 Applying Theorem 3 a second time, we obtain a complemen-
1050 tary array set with �M;N ; L� � �p1; lcm�p1; p1�; p1 × p1� �
1051 �p1; p1; p21�. After applying Theorem 3 to S�0� q1 − 1 times,
1052 we obtain the complementary array set S�1� with �M;N ; L� �
1053 �p1; p1; pq1−11 �.
1054 In the second iteration, we first apply Theorem 4 to S�1�

1055 with M̃ � p2 while satisfying Remark 5 conditions. The result-
1056 ing complementary array set has parameters �M;N ; L� �
1057 �p2; lcm�p1; p2�; p1 × pq1−11 � � �p2; p1p2; pq11 �; then we apply
1058 Theorem 3 q2 − 1 times with U being the Fourier matrix F p2
1059 to create the complementary array set S�2� with �M;N ; L� �
1060 �p2; p1p2; pq11 pq2−12 �.
1061 By recursive construction as above, after wth iteration we
1062 obtain the complementary array set S�w� with �M;N ; L� �
1063 �pn; p1 � � � pn; pq11 pq22 � � � pqn−1n �. Finally, applying Theorem 3
1064 with U equal to the Fourier matrix F pn an extra time to S�w�,

1065we obtain a complementary array set with �M;N ; L� �
1066�pn; p1p2 � � � pn; pq11 pq22 � � � pqnn �.
1067The proof of the second part is similar.

1068APPENDIX D: PROOF OF THEOREM 6

1069Let Z�λ� denote the polynomial ring over Z, and ΦN �λ� denote
1070the N th cyclotomic polynomial. Let ξ � exp�i2π∕N �, UN �
1071fξjjj � 0; � � � ; N − 1g be the group of N th roots of unity en-
1072dowed with multiplication. For any η ∈ UN, let jηj denote the
1073order of η in the cyclic group UN . Because

PM
m�1 xm � 0,

1074there exists a polynomial F�λ� � PN−1
j�0 f jλ

j ∈ Z�λ� such that

1075f j ≥ 0 and F�ξ� � 0.
1076We prove Theorem 6 using a sequence of lemmas.
1077Lemma 5 Let pk be distinct prime numbers and integers
1078rk > 0, k � 1; 2. Then,

Φp1�λp
r1−1
1 pr22 � �

Yr2
i�0

Φpr11 pi2
�λ�; (D1)

Φp1�λp
r1−1
1 pr22 � � Φp1�λp

r1−1
1 pr2−12 �Φpr11 pr22

�λ�; (D2)

Φp1�λp
r1−1
1 � � Φpr11

�λ�: (D3)

1079Similar results hold if p1 and r1 are respectively replaced with p2
1080and r2 in the above equations.
1081Proof of Lemma 5:
1082Since both sides are monic and have degree �p1 − 1�
1083pr1−11 � �p1 − 1�pr1−11 pr22 , it suffices to show that every zero of

1084Φpr11 pi22
�λ� is a zero ofΦp1�λp

r1−1
1 �. If η is a zero ofΦpr11 pi22

�λ�, then
1085jηj � pr11 p

i2
2 , which implies jηpr1−11 j � jηj∕ gcd�jηj; pr1−11 � � p1.

1086Therefore, η is also a zero of Φp1�λp
r1−1
1 �.

1087The proof of Eqs. (D2) and (D3) is similar.
1088Lemma 6 If n � 1, i.e., N � pr11 , then there exists a polyno-
1089mial A�λ� � PN∕p1−1

j�0 ajλj ∈ Z�λ�, aj ≥ 0, such that

F �λ� � Φp1�λ
N
p1�A�λ�:

1090Proof of Lemma 6:
1091First, ΦN �λ� divides F �λ�, because F �λ� annihilates ξ and
1092ΦN �λ� is an irreducible and monic polynomial in the ring Z�λ�.
1093Besides this, Eq. (D3) gives Φp1�λN∕p1� � ΦN �λ�. Therefore,
1094there exists a polynomial Ak�λ� �

PN∕p1−1
j�0 ajλj ∈ Z�λ� such

1095that F �λ� � Φp1�λN∕p1�A�λ�.
1096Second, because deg�F � < N , we have deg�A� � deg�F �−
1097deg�ΦN �λ�� < pr1−11 � N∕p1. We note that f j � aj,
1098j � 0; � � � ; N∕p1 − 1 and that f j ≥ 0. Therefore, the coeffi-
1099cients of A�λ� are nonnegative.
1100Lemma 7
1101If n � 2, i.e., N � pr11 p

r2
2 , then there exist polynomials

1102Âk�λ� ∈ Z�λ�, k � 1; 2 such that

Â1�λ�Φp1�λ
N
p1� � Â2�λ�Φp2�λ

N
p2� � ΦN �λ�: (D4)

1103Proof of Lemma 7:
1104First, Eq. (D1) and its similar result (by replacing p1, r1 with
1105p2, r2) imply that gcd�Φp1�λN∕p1�, Φp2�λN∕p2�� � ΦN �λ�.
1106Second, consider two polynomials T tk �λ� � 1� λ� � � ��
1107λtk−1, k � 1; 2, where t1 > t2 and gcd�t1; t2� � 1. We apply
1108Euclidean division to t1, t2 to obtain t1 � t2q � b,
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1109 0 < b < t2. It is easy to observe that T t1�λ� � T t2�λ�
1110

Pq
j�1 λ

t1−jt2 � T b�λ�. If we continuously apply Euclidean
1111 division, we will find polynomials Âk�λ� ∈ Z�λ�, k � 1; 2 such
1112 that

Â1�λ�T t1�λ� � Â2�λ�T t2�λ� � 1: (D5)

1113 Replacing t1, t2, and λ respectively by p1, p2, and λN∕�p1p2� in
1114 Eq. (D5), multiplying both sides byΦN �λ�, and using Eq. (D2)
1115 and its similar result, we obtain Eq. (D4).
1116 Lemma 8
1117 If n � 2, i.e., N � pr11 p

r2
2 , then there exist polynomials

1118 Ak�λ�, deg�Ak� ≤ N∕pk − 1, k � 1; 2 such that F �λ� � P
2
k�1

1119 Ak�λ�Hk�λ�, where Hk�λ� � Φpk �λN∕pk�, k � 1; 2.
1120 Proof of Lemma 8:
1121 Clearly, ΦN �λ� divides F �λ� due to the reason mentioned
1122 before. Therefore, Lemma 7 implies that there exist polyno-
1123 mials Âk�λ� ∈ Z�λ�, k � 1; 2 such that F�λ� � P

2
k�1 Âk�λ�

1124 Hk�λ� holds.
1125 It is easy to see that λdHk�λ� can be written as λdHk�λ� �
1126 �λN − 1�Q�λ� � λd 0Hk�λ� for some Q�λ� ∈ Z�λ�, 0 ≤ d 0 ≤
1127 N∕pk − 1. Thus, there exist polynomials Ak�λ�, deg�Ak� ≤
1128 N∕pk − 1, k � 1; 2, and W �λ� such that

F �λ� �
X2
k�1

Ak�λ�Hk�λ� �W �λ��λN − 1�:

1129 Since deg�F� ≤ N∕pk − 1, we obtain W �λ� � 0.
1130 Lemma 9
1131 The coefficients of Ak�λ�, k � 1; 2 in Lemma 8 can be made
1132 nonnegative.
1133 Proof of Lemma 9:
1134 Let

DF � f�a10; � � � a1�N∕p1−1�; a20; � � � ; a2�N∕p2−1��jF�λ�

�
XNp1−1
j1�0

a1j1H 1�λ� �
XNp2−1
j2�0

a2j2H 2�λ�g:

D�2�
F �

�
�a10; � � � a1�N∕p1−1�; a20; � � � ; a2�N∕p2−1��jF �λ�

�
XNp1−1
j1�0

a1j1H 1�λ� �
XNp2−1
j2�0

a2j2H 2�λ�;

× a2j2 ≥ 0; j2 � 0; � � � ; N
p2

− 1:
�
:

1135 For a fixed integer 0 ≤ j ≤ N∕p1 − 1, consider the set
1136 fj� kN∕p1; k � 0; � � � ; p1 − 1gmodN . For each k � 0; � � � ;
1137 p1 − 1, we apply Euclidean division to j� kN∕p1 and
1138 N∕p2, and obtain integers 0 ≤ gk ≤ N∕p2 − 1, 0 ≤ hk ≤
1139 p2 − 1 such that j� kN∕p1 � gk � hkN∕p2. Because of the
1140 identity

⋃
p2−1

τ�0

fgk � �hk � τ�N∕p2; k � 0; � � � ; p1 − 1g

� ⋃
p1−1

k�0

fgk � �hk � τ�N∕p2; τ � 0; � � � ; p2 − 1g modN;

1141 within the set DF we can always decrease a1�j�τN∕p2 mod�N∕p1��;
1142 τ � 0; � � � ; p2 − 1 by one, while increasing a2gk , k � 0; � � � ;

1143p1 − 1 by one. We conclude that the subset D�2�
F of DF is not

1144empty. To finish the proof, it suffices to show that withinD�2�
F ,

1145there exists an element with a1j1 ≥ 0 for all j1 � 0; � � � ;
1146N∕p1 − 1. If this is not true, then there exists μ < 0 such that

μ � maxh
a10;���a1�Np1−1�;a20;���;a2�Np2−1�

i
∈D�2�

F

n
min

n
a10; � � � ; a1�Np1−1�

oo
:

(D6)

1147Suppose that a1j � μ. For each k � 0; � � � ; p1 − 1, consider the
1148nonnegative coefficient of the item λj�kN∕p1 in F �λ�:
1149A1�λ�H 1�λ� contributes a negative value a1j to it, and thus
1150A2�λ�H 2�λ� contributes a positive value. In other words, there
1151exist integers 0 ≤ gk ≤ N∕p2 − 1, 0 ≤ hk ≤ p2 − 1 such that
1152j� kN∕p1 � gk � hkN∕p2 and that a2gk > 0. It is clear that
1153gk, k � 0; � � � ; p1 − 1 are distinct values. By similar reasoning as
1154before, we can increase a1�j�τN∕p2 mod�N∕p1��, τ � 0; � � � ; p2 − 1
1155by one, while decreasing a2gk , k � 0; � � � ; p1 − 1 by one, in
1156order to get another element in D�2�

F . Thus, we can increase

max
�a10;���a1�N∕p1−1� ;a20;���;a2�N∕p2−1��∈D

�2�
F

n
min

n
a10; � � � ; a1�Np1−1�

oo
;

1157contradicting the definition of μ in Eq. (D6).
1158Proof of Theorem 6:
1159Combining Lemmas 6–9, we conclude that F �λ� can be
1160written as

F �λ� �
X2
k�1

Ak�λ�Hk�λ�;

where Ak�λ� �
XNpk−1
j�0

akjλj ∈ Z�λ�; akj ≥ 0;

Hk�λ� � Φpk �λN∕pk� � 1� λ
N
pk � λ

2Npk � � � � � λ
�pk−1�Npk ;

1161which is equivalent to Eq. (22). Equation (23) then immedi-
1162ately follows from Eq. (22).
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