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Perturbation Analysis of Orthogonal
Matching Pursuit
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Abstract—Orthogonal Matching Pursuit (OMP) is a canonical
greedy pursuit algorithm for sparse approximation. Previous
studies of OMP have considered the recovery of a sparse signal
through and , where is a matrix with more columns
than rows and denotes the measurement noise. In this paper,
based on Restricted Isometry Property (RIP), the performance of
OMP is analyzed under general perturbations, which means both
and are perturbed. Though the exact recovery of an almost

sparse signal is no longer feasible, the main contribution reveals
that the support set of the best -term approximation of can be
recovered under reasonable conditions. The error bound between
and the estimation of OMP is also derived. By constructing an

example it is also demonstrated that the sufficient conditions for
support recovery of the best -term approximation of are rather
tight. When is strong-decaying, it is proved that the sufficient
conditions for support recovery of the best -term approximation
of can be relaxed, and the support can even be recovered in the
order of the entries’ magnitude. Our results are also compared in
detail with some related previous ones.

Index Terms—Compressed sensing (CS), general perturbations,
orthogonal matching pursuit (OMP), restricted isometry property
(RIP), strong-decaying signals, support recovery.

I. INTRODUCTION

F INDING the sparse solution of an underdetermined linear
equation

(1)

is one of the basic problems in some fields of signal processing,
where and with . The basic problem
(1) has arisen in many applications, including Sparse Compo-
nent Analysis (SCA) [1], [2] and Blind Source Separation (BSS)
[3], [4]. Since the introduction of Compressed Sensing (CS)
[5]–[8], the problem (1) has received significant attention in
the past decade. In the field of CS, denotes the measurement
vector, is called the sensing matrix, and is the sparse or al-
most sparse signal to be recovered.
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Various algorithms have been proposed to recover . They
roughly fall into two categories.
Convex relaxation:Based on linear programming technique,

finding the sparse solution to (1) can be relaxed to a convex op-
timization problem, also known as Basis Pursuit (BP) [6]. As
for the case of noisy measurements, the problems of Least Ab-
solutely Shrinkage and Selection Operator (LASSO) [41] and
Basis Pursuit De-Noising (BPDN) [42] are introduced. Algo-
rithms used to complete the convex optimization include Inte-
rior-point Methods [9], Projected Gradient Methods [10], and
Iterative Thresholding [11].
Greedy pursuits:Most of these algorithms build up an

approximated set of nonzero locations by making locally
optimal choices in each iteration. Several popular ones are
Orthogonal Matching Pursuit (OMP) [12]–[14], Regularized
Orthogonal Matching Pursuit (ROMP) [15], Compressive
Sampling Matching Pursuit (CoSaMP) [16], Subspace Pursuit
(SP) [17], and Iterative Hard Thresholding (IHT) [18].
For the scenario of no noise or perturbation, the recovery

process can be formulated as

where denotes the process of a recovery algorithm, with
the inputs listed in the following brackets, and denotes the
output (i.e., the approximation of the original sparse signal ).
Process of is non-perturbed, thus the sparse signal can be
exactly recovered under suitable conditions. For example, under
certain conditions, BP [19], [20], OMP [21]–[27], ROMP [15],
CoSaMP [16] and SP [17] all guarantee exact recovery of .
In practical applications, the measurement vector is often

contaminated by noise. Thus a perturbed measurement vector
in the form of

(2)

is considered, where denotes the measurement noise. In such
scenario, the recovery process can be formulated as

Plentiful studies of recovery algorithms including BP [19],
[28]–[31], OMP [25], [26], [28], [31], [32], ROMP [33],
CoSaMP [16], SP [17], IHT [18], and Sequential Orthogonal
Matching Pursuit (SeqOMP) [34] have considered the recovery
accuracy in process. Define the support set as the
set composed of the locations of all nonzero entries of a vector.
It has been shown that OMP will exactly recover the support
set of a sparse signal from the perturbed measurement vector,
i.e., , if certain requirements are satisfied
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with the coherence parameter [28, Th. 5.1], [32, Th. 3.1]
or Restricted Isometry Property (RIP) [25, Th. 2]. It is worth
mentioning that the noise is assumed to be deterministic
and unknown, and to have a bounded norm (also this paper’s
setting). In another common setting, which is not being handled
in this paper, denotes white Gaussian noise and the recovery
of support set for OMP is discussed based on probability [31,
Th. 4].
Existing results have mainly focused on the measurement

noise, yet results considering the general perturbations are rela-
tively rare. Here, the general perturbations involve a perturbed
sensing matrix as well as a perturbed measurement vector. Two
situations are considered in this paper from different perspec-
tive of views.
The first scenario is from user’s perspective of view. By mea-

suring an unknown system, one obtains its sensing matrix which
is inaccurate. Thus the sensing process is in the form of

(3)

with recovery process

The system perturbation is introduced because of mismod-
eling of the system, or the error involved during system cali-
bration. Since the available sensing matrix is the perturbed
instead of , the conditions for recovery are also in terms of the
former.
The second scenario is from designer’s perspective of view,

which means the system perturbation is introduced by phys-
ical implementation of a designed system model [35]. Thus
the sensing process is in the form of

(4)

with recovery process

Since the available sensing matrix is the ideal one, the condi-
tions for recovery should be in terms of in this scenario.
Herman and Strohmer have studied the accuracy of BP solu-

tion in process [36]. Later, Herman and Needell also gave
the recovery error of CoSaMP [37]. However, as far as we know,
few works have been done yet on the recovery error or perfect
support recovery of OMP under general perturbations.
Analysis of OMP considering general perturbations and sup-

port recovery may benefit the analysis of other greedy algo-
rithms. In some applications, recovering the support set other
than a more accurate estimation is a fundamental concern (e.g.,
in the reconstruction stage of the modulated wideband converter
(MWC) [35], [38]). In this paper, a completely perturbed sce-
nario in the form of (3) is considered and the performance of
OMP in process is studied. It is shown that under certain
RIP based conditions, the locations of largest magnitude en-
tries of an almost sparse signal can be exactly recovered via
OMP. Furthermore, an upper bound on the relative recovery
error is given. It is also demonstrated that the results gener-
alize the previous study concerning OMP in process in

TABLE I
THE OMP ALGORITHM

[23]–[25], [27]. The completely perturbed scenario (4) together
with process is also briefly discussed.
The rest of the paper is organized as follows. Section II gives

a brief review of OMP and RIP, as well as certain necessary
assumptions and notations. Section III presents the main theo-
retical results on the completely perturbed scenarios. Several
extensions are also presented with respect to special signals.
Section IV provides the proofs of the theorems. Section V dis-
cusses some related works. The whole paper is concluded in
Section VI. To make the paper more readable, some proofs are
relegated as an appendix in Appendix.

II. BACKGROUND

A. Orthogonal Matching Pursuit (OMP)

The key idea of OMP lies in the attempt to reconstruct the
support set of iteratively by starting with . In the
iteration, the inner products between the columns of and the
residual are calculated, and the index of the largest abso-
lute value of inner products is added to . Here, the residual

from the former iteration represents the component of the
measurement vector that cannot be spanned by the columns
of indexed by . In this way, the columns of which are
“the most relative” to are iteratively chosen. The OMP algo-
rithm is described in Table I. It is necessary to point out that the
version of OMP in this paper does not require , which appears
throughout the paper, to be an input. In fact, we are just con-
cerned with the performance of OMP at the iteration.
In fact, OMP can be well expressed using , , , Moore-

Penrose pseudoinverse, and orthogonal projection operator. A
detailed analysis has been given in [23]. To introduce the case of
noise and pave way for the proof of main results, a brief review
of them is given as follows.
Let denote the vector containing the entries of

indexed by . Define as the entry of vector . Let
denote the matrix obtained by selecting the columns
of sensing matrix indexed by . If has full column rank,

then is the Moore-Penrose pseudoinverse

of . Let and denote the orthog-
onal projection operator onto the column space of and its
orthogonal complement, respectively. Define and

when , then has the same size as . From
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the theory of linear algebra, any orthogonal projection operator
obeys and the columns of indexed by

are zeros.
In the iteration, we begin with the estimation from

the previous iteration. The discussion below demonstrates the
generation of .
In the update step of the previous iteration, which is actually

solving a least square problem, one has

(5)

In the matching step, one has

(6)

From (5), (6), and the fact that the columns of indexed by
are zeros, it can be derived that

(7)

Therefore , .
It is important to notice that the above property still holds

when and are replaced by the contaminated and . To see
this, it is calculated that

(8)

(9)

where and are defined by the perturbed sensing matrix
. Due to the fact that the columns of indexed by
still equal zeros, (7) holds in the completely perturbed scenario.

B. The Restricted Isometry Property (RIP)

For each integer , the RIP for any matrix
defines the restricted isometry constant (RIC) as the

smallest nonnegative number such that

(10)

holds for any -sparse vector [39]. It is easy to check that if
satisfies the RIP of order and with isometry constants
and , respectively, and , then one has .
Since the introduction of the RIP, it has been widely used as

a tool to guarantee successful sparse recovery for various algo-
rithms. For example, for the process, the RIP of order
with guarantees exact recovery for any -sparse

signal via ROMP [15]; the RIP of order with
permits SP to exactly recover any -sparse signal [17].
However, analyzing the performance of OMP with RIP was

relatively elusive before Davenport and Wakin’s work in [23].
They demonstrated that RIP can be used for a very straight-
forward analysis of OMP in process. It is shown that if

and is a -sparse signal, then is suf-
ficient for exact recovery of OMP [23, Th. 3.1]. Later, Liu and
Temlyakov relaxed the bound to [24, Th. 5.2]. Huang

and Zhu further improved the bound to , and they also
discussed the performance for the process [25]. In [27], it

has been proved that is sufficient for process, and for

any given , there exists a sensing matrix with
and a -sparse signal that exact recovery via OMP is not guaran-
teed. Therefore, if one uses the RIP of order as a sufficient
condition for exact recovery of a sparse signal via OMP, little
improvement is possible. In terms of the number of measure-
ments, for Gaussian or Bernoulli matrices it was demonstrated
in [23] that requires measurements,
and the number is roughly the same as what is required by co-
herence-based analysis in [21].

Assumptions and Notations

A vector is -sparse if it contains no more than
nonzero entries. Throughout this paper, however, the signal to
be recovered is not limited to a sparse one. For a non-sparse
signal , define as the -sparse signal that contains
the largest magnitude entries of (i.e., the best -term approx-
imation of ), and define . In order to delineate
the compressibility of a general signal , define

In this paper, is assumed to be almost sparse (i.e., and are
far less than 1). When , one has , and is
reduced to a sparse signal.
The notation of strong-decaying sparse signals is introduced

by Davenport and Wakin in [23]. In our work, such concept is
extended to general signals termed strong-decaying signals. Let

denote the entries of rearranged in descending
order by magnitude. is called an -strong-decaying signal if
for all and , ,
where is a constant.
When or process is concerned, it is necessary to

consider the nature of and , and how they influence the
process of OMP. This leads to the following definitions of rel-
ative bounds, which were introduced by Herman and Strohmer
in [36].
The symbols and denote the spectral norm of

a matrix and the largest spectral norm taken over all -column
submatrices, respectively. The noise and the perturbation
can be quantified as

(11)

where , , and are nonzero. These relative
upper bounds provide an access to analyze the influence of
and , even though the exact forms of them are unknown.

Throughout this paper, it is appropriate to assume that and
are far less than 1.

III. CONTRIBUTIONS

In this section, a completely perturbed scenario in the form of
(3) is considered and the performance of OMP in process
is studied. Theorem 1 presents the RIP-based conditions under
which the support set of the best -term approximation of can
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be exactly recovered. In Theorem 2, we construct a sensing ma-
trix and perturbations with which an almost sparse signal cannot
be recovered. The RIC of the matrix is slightly bigger than that
in the conditions of Theorem 1, which indicates that the suffi-
cient conditions in Theorem 1 are rather tight. Several exten-
sions with respect to special signals such as strong-decaying
signals are put forward in Theorem 3 and 4. In Theorem 5, per-
turbations in the form of (4) is considered and the performance
of OMP in process is studied. The following theorems and
remarks summarize the main results.
Theorem 1: Suppose that the inputs and of OMP are con-

taminated by perturbations in the form of (3), and that the orig-
inal signal is almost sparse. Define the relative perturbations
and as in (11). Let , and

(12)

If satisfies the RIP of order with isometry constant

(13)

then OMPwill recover the support set of exactly from and
in iterations, and the error between and the recovered
-sparse signal can be bounded as

(14)

In (13) the function is defined as

(15)

Proof: The proof consists of three parts. The former two
parts prove that

(16)

where , is a sufficient condition for the
support recovery. The last part then gives an upper bound of

, i.e., .
The detailed proof is postponed to Section IV-B.
Remark 1: Theorem 1 reveals that if the RIC of the available

sensing matrix is known to be under a threshold, it is guaran-
teed that the support set of the best -term approximation of a
signal can be recovered.
It is of great significance to properly interpret in (13). On

one hand, the effects of and are reflected in terms of the
worst-case relative perturbation and , respectively. There-
fore represents a worst-case effect from perturbed and .
If more information on and is known, it may be possible
to estimate a smaller . On the other hand, is the smallest
magnitude of nonzero entries in and represents the capa-
bility of a sparse signal to be recovered against perturbations.
Therefore, has a natural interpretation as a lower bound on
the minimum component SNR. One can see that the bound on

increases as increases.

Remark 2: Considering process, Theorem 1 generalizes
the results in [23]–[25], [27]. If vector and matrix are un-
perturbed, and is -sparse, then (13) reduces to

(17)

which is exactly the result in [27].
Remark 3: It needs to be pointed out that in order to be well

defined, should be greater than zero. Thus one gets

(18)

It means that for the best -term approximation of an almost
sparse signal, the lower bound on theminimum component SNR
should be large enough, so that its support can be extracted de-
spite various perturbations.
When is -sparse and only the measurement vector is

perturbed, two corollaries can be derived from Theorem 1.
Corollary 1: Suppose that in (3) and that the original

signal is -sparse. Let

If satisfies the RIP of order with isometry constant

(19)

then OMP will recover the support set of exactly from and
in iterations, and the error between and the recovered
-sparse signal can be bounded as

(20)

Corollary 1’: Suppose that in (3) and that the original
signal is -sparse. If satisfies the RIP of order with
isometry constant

(21)

where is a constant, and

(22)

then OMP will recover the support set of exactly from and
in iterations, and the error between and the recovered
-sparse signal can be bounded as

(23)

Remark 4: Both Corollary 1 and Corollary 1’ concern the
conditions for exact recovery of under measurement
noise, but they are obtained from different point of views. In
Corollary 1’, the bound of is unrelated with the noise for
a given , while the norm of measurement noise should be
under a threshold. A comparison of Corollary 1 with a similar
conclusion [28 , Th. 5.1], and a comparison of Corollary 1’ with
conclusion [25 , Th. 2] will be given in Section V.
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When neither the measurement vector nor the sensing matrix
is perturbed, the following corollary gives sufficient conditions
under which the support of the best -term approximation of an
almost sparse signal can be exactly recovered. A similar con-
clusion in [40, Th. 3.1] will be compared with Corollary 2 in
Section V.
Corollary 2: Suppose that , in (3), and that the

original signal is almost sparse. Let

(24)

If satisfies the RIP of order with isometry constant

(25)

then OMPwill recover the support set of exactly from and
in iterations, and the error between and the recovered
-sparse signal can be bounded as

(26)

Inspired by the work [27], the following theorem reveals how
tight the RIP-based conditions in Theorem 1 are.
Theorem 2: Consider the completely perturbed scenario (3).

For any given positive integer , , constants
and , there exist an almost sparse signal , a
sensing matrix , perturbations and such
that the smallest nonzero magnitude of -sparse is ,

and the perturbed sensing matrix satisfies the RIP of order
with isometry constant

(27)

Furthermore, OMP fails to recover the support set of from
and in iterations.
Proof: The proof is postponed to Section IV-C.

Compared to [27, Th. 3.2], Theorem 2 takes general perturba-
tions as well as non-sparseness of into consideration. Setting

and in Theorem 2, it reduces to the result in [27].
Remark 5: It will be shown that the bound (13) is rather tight

and little improvement can be made on it. In the proof of The-
orem 1, we first prove that (16) is a sufficient condition for sup-
port recovery of , then estimate by . Com-
paring (27) to (16), these two bounds are both linear decreasing
function of , and as tends to infinity, the ratio of their -in-
tercepts approaches 1 as , and the ratio of their slopes ap-
proaches 3. As for the upper bound of , [16, Prop. 3.5] and
triangle inequality are used. Because the equality of [16, Prop.
3.5] is difficult to be achieved, we assume that is -sparse for
the sake of briefness. In fact,

can be satisfied. First, let , and choose a -sparse
signal that satisfies . Let .
Then it holds that

Due to the above two reasons, we show that the bound (13) in
Theorem 1 is rather tight.
For -strong-decaying signals, the requirement of isometry

constant can be relaxed, and the locations can even be
picked up in the order of their entries’ magnitude as long as the
decaying constant is large enough. This is what the following
two theorems reveal.
Theorem 3: Suppose that the inputs and of OMP are

contaminated by perturbations as in (3), and that the original
signal is -strong-decaying. Let

and , where is a constant depending only

on . If satisfies the RIP of order with isometry constant

(28)

then OMPwill recover the support set of exactly from and
in iterations, and the error between and the recovered
-sparse signal can be bounded as

(29)

Proof: The proof is postponed to Section IV-D.
Remark 6: Theorem 3 reveals that the recovery of a strong-

decaying signal needs relaxed requirement of , and that the
larger is, the easier the requirement of can be satisfied.
To see this, notice that for , Cauchy-Schwarz inequality
implies , and thus

Define . Because is a de-

creasing function of , the larger is, the smaller is, and
the easier the requirement of can be satisfied.
Corollary 3: Suppose that the measurement vector and the

sensing matrix are unperturbed, and that the original signal is
a -sparse -strong-decaying one. If satisfies the RIP of order

with isometry constant

(30)

then OMP will recover exactly from and in iterations.
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Remark 7: Because , the sufficient condition (30)
can be replaced by

Furthermore, if is far greater than 1, the requirement approx-
imately reduces to .
Theorem 4: Suppose that the inputs and of OMP are

contaminated by perturbations as in (3), and that the original
signal is -strong-decaying. Let

where is a constant depending only on . If satisfies the
RIP of order with isometry constant

and

(31)

where

(32)

then OMPwill recover the support set of exactly from and
in iterations, and the recovery is in the order of the signal

entries’ magnitude.
Proof: The proof is postponed to Section IV-E.

Based on Theorem 4, the following corollary can be directly
derived. A comparison between this corollary and a similar re-
sult in [23, , Th. 4.1] will be given in Section V.
Corollary 4: Suppose that and are unperturbed, and that

the original signal is a -sparse -strong-decaying one. If
satisfies the RIP of order with isometry constant

and

(33)

then OMP will recover exactly from and in iterations,
and the recovery is in the order of the entries’ magnitude.
At the end of the main contribution, perturbations in the form

of (4) is considered.
Theorem 5: Suppose that the inputs and of OMP are

contaminated by perturbations as in (4), and that the original
signal is almost sparse. Define the relative perturbations as
that in (11), and as:

Let

If satisfies the RIP of order with isometry constant

then OMPwill recover the support set of exactly from and
in iterations, and the error between and the recovered
-sparse signal can be bounded as

Proof: The proof is postponed to Section IV-F.
Remark 8: The definition of in Theorem 5 is different from

that in Theorem 1. This is due to the fact that denotes the rel-
ative measurement noise added to the output of the system, and
the output in this scenario is other than . By comparison
of Theorem 1 and 5, it can be seen that their difference comes
from the respective definition of . Based on the completely
perturbed scenario (4), several results similar to Theorem 2–4
can be derived, and their proofs are analogous, thus they are not
included for simplicity.

IV. PROOFS

A. Lemmas

Before the proofs of the main theorems, two helpful lemmas
are given first. Their proofs are postponed to Appendix.
Lemma 1: Let denote positive variables satis-

fying for all , where is a constant.
Then the function

achieves its minimum value when

.
Lemma 2: Suppose that the inputs and of OMP are con-

taminated by perturbations as in (3), and that the original signal
is an -strong-decaying one. Let

For the iteration, define as the signal that contains
the entries of indexed by with the rest set-
ting to zeros. If satisfies the RIP of order with isometry
constant , one has

(34)

for all .
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B. Proof of Theorem 1

Proof: First of all, it will be proved that OMP exactly re-
covers the support set of in iterations. This proof consists
of three parts. First, we prove that (16) implies

(35)

for all . Second, define . We
prove that (35) is a sufficient condition for the support recovery
in the iteration with . At last, an upper bound
of is given.
First, define

(36)

then it’s easy to check that . According to (16), it can be
derived that

(37)

which implies (35).
The proof of the second part works by induction. To begin

with, consider the first iteration where . Equation (3)
indicates that

(38)

Then,

which can be rewritten as

where denotes the inner product in Euclidean space and
denotes the natural basis. Define

and . On one hand,

(39)

On the other hand,

(40)

Thus one has

(41)

For , [30, Lemma 2.1] implies that

(42)

Because , (35) of together with (41) and
(42) indicate that

which guarantees the success of the first iteration.
Now consider the general induction step. In the iteration,

suppose that all previous iterations succeed, which means that
is a subset of . Define , then

. Because

one has

Define

and . According to (7), it can be
derived that

(43)

Following the steps in the proof for the first iteration, and
noticing that , it can be derived from (35) that

According to (7), for , which guarantees the
success of the iteration. The proof of induction is completed.
Thirdly, an upper bound of is given as follows. Ac-

cording to [16 , Prop. 3.5]

and
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Therefore,

(44)

Noticing that , one has . There-
fore (13) implies (16), which guarantees the exact recovery of

.
To finish the proof, the recovery error is bounded as follows.

Because is exactly recovered, one has

(45)

Thus

C. Proof of Theorem 2

Proof: First, we prove that there exist a -sparse signal
with as its smallest nonzero entries’ magnitude, a vector

satisfying , and a perturbed sensing matrix
with

(46)

such that OMP fails to recover the support set of from
and in iterations if . Let

(47)

where and are two constants with

. Since

(48)

it can be derived that the eigenvalues of are

(49)

Thus for , its RIC of order satisfies

(50)

Let and , then the per-
turbed measurement vector

Set

then the matching vector , which implies
that OMP fails in the first iteration if . It is easy to check
that

Second, let , ,

, then

and , which completes the proof of Theorem
2.

D. Proof of Theorem 3

Proof: The proof of Theorem 3 is similar to that of The-
orem 1. For the sake of briefness, some revisions are made based
on the proof of Theorem 1.
First, define

According to Lemma 1, for any -strong-decaying and
-sparse signal , it holds that . Therefore,

(39) and (43) can be replaced by

and

respectively. Further, since
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Equation (35) can be replaced by

(51)

Since , (51) can be inferred by

(52)

Second, an upper bound of can be given in terms of
as follows

where is a constant only related to . Therefore,

Notice that , therefore (28) guarantees exact

recovery of .

E. Proof of Theorem 4

Proof: By induction it will be shown that (31) guarantees
the order of recovery. For the iteration, suppose that all the
locations recovered in the previous iterations are in order. De-
fine as that in Lemma 2. It will be demonstrated that OMP
will choose the largest entry of (i.e., ). According to
Lemma 2,

(53)

It can be calculated from that

Thus,

(54)

Combining (53) and (54), one has

where

It is easy to check that is greater than for
, if (31) is satisfied.

F. Proof of Theorem 5

Proof: For the sake of briefness, we only need to make
some revisions based on the proof of Theorem 1. Noticing that
the input is unperturbed and

, and in the proof of Theorem 1 need to be replaced
by and .
Define . An upper bound of is given

as follows. According to [16, Prop. 3.5],

and

Therefore,

and

V. RELATED WORKS

In this section, Corollary 1, Corollary 1’, Corollary 2, and
Corollary 4 are compared with four related conclusions in pre-
vious works.

A. Corollary 1 and [28, Th. 5.1]

[28, Th. 5.1]: Suppose that in (3) and
is -sparse. Define the coherence parameter of as

, where . If
satisfies

(55)
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then OMP will recover the support set of exactly and the re-
covery error can be bounded as

(56)

If we do not approximate the upper bound of in terms of
in the proof of Theorem 1, Corollary 1 derived from Theorem

1 has a more relaxed expression.
Corollary 1*: Suppose that in (3) and is -sparse.

If satisfies the RIP of order with isometry constant

(57)

then OMP will recover the support set of exactly and the error
can be bounded as

(58)

Although [28, Th. 5.1] is coherence-based while Corollary
1* is RIC-based, they both provide conditions for successful
support recovery under measurement noise, based on which the
recovery error is further estimated. The comparisons are con-
ducted from two aspects.
First, consider the ratio of the upper bounds on the recovery

error in (58) and (56):

According to [29, Prop. 4.1], , and thus .
This means that the error bound given by Corollary 1* is at least
as good as that in [28 , Th. 5.1].
Second, consider the sufficient conditions for successful sup-

port recovery of the two results. Direct comparison between (55)
and (57) is difficult since as far as we know, there is no clear
comparison between and for arbitrary sensing ma-
trix. For simplicity, consider the scenario that the sensing ma-
trix is Gaussian, and , , and increase in a proportional
manner, i.e., and as , where

are two constants. Results in [43] show that there exists
a constant such that with high prob-
ability. Another result in [22] reveals that
holds with high probability where is a constant. Thus

with high probability. Inequality (55) im-
plies that

(59)

and the following inequality

(60)

implies (57). Since the bound in (59) decreases with a higher
order than that in (60) as increases, the sufficient condition
(57) is more relaxed in this sense.

B. Corollary 1’ and [25, Th. 2]

In [25], it is proved that for process, the support of a
-sparse signal can be recovered, provided that

and . By comparison, it is shown that Corollary
1’ is at least as good as this conclusion.
First, let satisfy , i.e.,

Consider the ratio of the required upper bound of in the
result of [25] to that in Corollary 1’:

It can be concluded from that

, which means that the requirement of in
Corollary 1’ is more relaxed.
Second, the requirement of in Corollary 1’ is more re-

laxed. Because in Corollary 1’ is optional, it can be chosen
small enough that

Despite the difference in requirements, the recovery errors
given in [25, Th. 2] and Corollary 1’ are the same, since these
errors are both derived when the support set of the sparse signal
is perfectly recovered.

C. Corollary 2 and [40, Th. 3.1]

In [40], the main result concerns the error estimation for
OMP. It is proved that

where is a non-sparse signal we wish to recover, is
the estimated solution via OMP in the iteration, is
the error between the best -term approximation of and ,
and is the RIC of order . This conclusion gives an upper
bound on the error between the original signal and the estimated
result of any iteration in OMP.
The original signal to be recovered in [40] is non-sparse, and

the inputs and are assumed non-perturbed. Thus the re-
sult actually gives an upper bound on the error between and

for process. Set , and this result can be
rewritten as

(61)
In Corollary 2, the result is

(62)
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Before comparison, it is worth mentioning that there are fun-
damental differences between the above two conclusions. First,
conditions that guarantee the support set recovery of the best
-term approximation of is the main concern in Corollary 2,
and based on the successful support recovery, an upper bound
on the error is estimated. In the reference, however, the error
is directly given regardless of the support recovery. Sometimes,
recovering the support set other than the more accurate estima-
tion is a fundamental concern. Second, compared with [40], this
paper has an apparent limitation: the non-sparse signal consid-
ered in this paper is almost sparse, whereas the one in [40] is
arbitrary.
Despite the differences, a tentative comparison of their re-

covery error estimations is given as follows. Notice that it is
really hard to demonstrate which result is better, since the result
in [40] involves which does not appear in our work. How-
ever, a condition with involved is given under which (62) is
at least as good as (61). From (62) one has

(63)

If

(64)

from (63) one has

(65)

Compared with (61), (65) actually gives a tighter bound.
In fact, the above requirement of can be written in terms

of :

(66)

Assume nontrivially that . Thus
and . According to (18) and (24), one has

(67)

Combining (63), (66) and (67), it holds that

(68)

D. Corollary 4 and [23, Th. 4.1]

For process with -sparse signal , Davenport and
Wakin proved in [23] that if satisfies the RIP of order
with , and

(69)

then OMP will recover sequentially from and in itera-
tions [23].
When is no longer sparse, and the sensing matrix as well as

the measurement vector is perturbed, Theorem 4 shows that the
elements of can still be picked up sequentially.
Corollary 4 is derived from Theorem 4. For , one has

. Thus, it can be seen from (33) and (69) that
Corollary 4 is at least as good as the conclusion in [23] when

is greater than 1.2 (i.e., ),
and the latter one is better otherwise.

VI. CONCLUSION

In this paper, considering a completely perturbed scenario
in the form of and , the perfor-
mance of OMP in recovering an almost sparse signal (i.e.,

) is studied.
Though exact recovery of the best -term approximation of
is no longer realistic, Theorem 1 shows that exact recovery

of its support via OMP can be guaranteed under suitable con-
ditions. Based on RIP, such conditions involve the sparsity, the
relative perturbations of and , and the smallest nonzero entry
of . Furthermore, the error between the best -term approxi-
mation of and the output is estimated. This completely per-
turbed framework extends the prior work in non-perturbed and
measurement-perturbed scenarios. Furthermore, we construct a
sensing matrix and perturbations with which an almost sparse
signal cannot be recovered. The RIC of the matrix is slightly
bigger than that in the sufficient conditions of Theorem 1, which
indicates that the conditions are rather tight.
In addition, when is an -strong-decaying signal, several

extensions of Theorem 1 are put forward. Theorem 3 reveals
that the requirement in Theorem 1 can be relaxed to guarantee
the exact recovery of support. Theorem 4 demonstrates that if
is large enough, the support is picked up in the order of its

entries’ magnitude. This advantage is of great significance in
practical scenarios, since the larger entries are often more im-
portant than the smaller ones, and recovery in order indicates
the algorithm is more stable. In the end, Theorem 5 discussed
the other scenario of general perturbations, which is in the form
of and , with the recovery process
written as . Notice that several results
similar to Theorem 2–4 are available for this scenario, however,
they are not included for simplicity. These results are in com-
prehensive comparisons with some previous ones, and condi-
tions under which our results are at least as good as them are
discussed.

APPENDIX A
PROOF OF LEMMA 1

Proof: First of all, see as
constants, and define the function with variable
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where , . Then
we prove .
The proof lies in the fact that can be written as

where

and . Because , equals its minimum
when

(70)

which further infers that

Because and is an increasing
function when ,
Lemma 1 is proved by induction. To begin with, let

and fix , then the above conclusion implies
.

Furthermore, assume that

The above conclusion gives

Therefore, it can be inducted that is no less than
, which concludes the proof.

APPENDIX B
PROOF OF LEMMA 2

Proof: It can be concluded from (8), (9), and (38) that

(71)

where , . Because
, according to [23, Lemma 3.3], for

all , it holds that

(72)

According to [23, Lemma 3.2 ], for ,

(73)

Notice that the last inequality holds since , which has
been given in the proof of Theorem 3. Combining (71)–(73),
and triangle inequality, one finally gets
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