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Bridging AIC and BIC:
A New Criterion for Autoregression

Jie Ding, Vahid Tarokh, and Yuhong Yang

Abstract—To address order selection for an autoregres-
sive model fitted to time series data, we propose a new
information criterion. It has the benefits of the two well-
known model selection techniques, the Akaike information
criterion and the Bayesian information criterion. When the
data is generated from a finite order autoregression, the
Bayesian information criterion is known to be consistent,
and so is the new criterion. When the true order is infinity
or suitably high with respect to the sample size, the Akaike
information criterion is known to be efficient in the sense
that its predictive performance is asymptotically equivalent
to the best offered by the candidate models; in this case, the
new criterion behaves in a similar manner. Different from
the two classical criteria, the proposed criterion adaptively
achieves either consistency or efficiency depending on the
underlying true model. In practice where the observed time
series is given without any prior information about the
model specification, the proposed order selection criterion
is more flexible and reliable compared with classical ap-
proaches. Numerical results are presented demonstrating
the adaptivity of the proposed technique when applied to
various datasets.

Index Terms—Adaptivity; Akaike information crite-
rion; Asymptotic efficiency; Bayesian information crite-
rion; Bridge criterion; Consistency; Information criterion;
Model selection; Parametricness index.

I. INTRODUCTION

In a practical situation of the autoregressive model
fitting, the order of the model is generally unknown.
Many order selection methods have been proposed, and
each follows a different philosophy. Anderson’s multiple
decision procedure [1] sequentially tests when the partial
autocorrelations of the time series become zero. The
final prediction error criterion proposed by Akaike [2]
aims to minimize the one-step prediction error when the
estimates are applied to another independently generated
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dataset. Bhansali and Downham [3] generalized the final
prediction error criterion by replacing 2 with a param-
eter α in its formula, and proved that the asymptotic
probability of choosing the correct order increases as α
increases. The well-known Akaike Information Criterion,
AIC [4], was derived by minimizing the Kullback-
Leibler divergence between the true distribution and the
estimate of a candidate model. Some variants of AIC, for
example the modified Akaike information criterion that
replaces the constant 2 by a different positive number,
have also been considered [5]. Nevertheless, Akaike [6]
argued that within a Bayesian framework, the original
AIC is more appropriate than its variants for practical ap-
plications. Hurvich and Tsai [7] proposed the corrected
AIC for the case where the sample size is small. Another
popular method is the Bayesian information criterion,
BIC, proposed by Schwarz [8] that aims at selecting a
model that maximizes the posterior model probability.
Hannan and Quinn [9] proposed a criterion, HQ, that
replaces the log n term in BIC by c log log n (c > 1),
where n is the sample size. They showed that this is the
smallest penalty term that guarantees strong consistency
of the selected order. The focused information criterion
is another approach that takes into account the specific
purpose of the statistical analysis, by estimating the risk
quantity of interest for each candidate model [10], [11].
Other methods for autoregressive order selection include
the criterion autoregressive transfer function method
[12], the predictive minimum description length criterion
[13], the predictive least-squares principle [14], [15], and
the combined information criterion [5]. More references
can be found in [16], [17]. Despite the rich literature on
autoregressive models, the most common order selection
criteria remain AIC and BIC.

In this paper, the specified model class for fitting is
the set of autoregressions with orders L = 1, . . . , L

(n)
max

for some prescribed natural number L(n)
max. In relation

to the true data generating process, the model class is
referred to as well-specified (or parametric) if the data
is generated from a finite order autoregression and the
true order is no larger than L

(n)
max, and mis-specified (or

nonparametric) otherwise. It is well known that BIC is
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consistent in order selection in the well-specified setting.
In other words, the probability of choosing the true order
tends to one as the sample size tends to infinity. The
Akaike information criterion is not consistent and has a
non-vanishing probability when the sample size tends to
infinity [18]. However, AIC is shown to be efficient in
the mis-specified setting, while BIC is not [19]. Here
we call an order selection procedure (asymptotically)
efficient if its prediction performance (in terms of the
squared difference between the prediction and its target
conditional mean) is asymptotically equivalent to the
best offered by the candidate autoregressive models. A
rigorous definition of efficiency is given in Section IV-C.
In other words, AIC typically produces less modeling
error than BIC when the data is not generated from a
finite order autoregressive process. Furthermore, asymp-
totic efficiency of AIC for order selection in terms of
the same-realization predictions for infinite order autore-
gressive or integrated autoregressive processes has also
been well established [20], [21]. We note that L(n)

max is
usually allowed to grow with n at an appropriate rate
for two purposes. Firstly, if data is generated from a
finite dimensional model, a fixed L(n)

max (not depending on
n) may impose an unnecessary upper bound to prevent
the true model from being selected. Secondly, if data is
generated from an infinite dimensional model, a growing
L
(n)
max makes it possible to achieve the optimal bias-

variance (or underfitting-overfitting) tradeoff for each n.

In real applications, one usually does not know
whether or not the model class is well-specified. The
task of adaptively achieving the better performance of
AIC and BIC is theoretically intriguing and practically
useful. There have been several efforts towards this
direction. Yang [22] considered the possibility of sharing
the strengths of AIC and BIC in the regression context.
It has been shown under mild assumptions that any con-
sistent model selection criterion behaves suboptimally
for estimating the regression function in terms of the
minimax rate of convergence [22]. In other words, the
conflict between AIC and BIC in terms of achieving
model selection consistency and minimax-rate optimality
in estimating the regression function cannot be resolved.
But this does not indicate that there exists no criterion
achieving the pointwise asymptotic efficiency in both
well-specified and mis-specified scenarios, because the
minimaxity (uniformity over the linear coefficients) is
intrinsically different from the (pointwise) efficiency. In
the remarkable work of Ing [23], a hybrid selection
procedure combining AIC and BIC-like criteria was pro-
posed. Loosely speaking, if a BIC-like criterion selects
the same model at sample sizes nℓ (0 < ℓ < 1) and

n, then with high probability (for large n) the model
class is well-specified and the true model has been
converged to, and thus a BIC-like criterion is used;
otherwise AIC is used. Under some conditions, the
hybrid approach was proved to achieve the pointwise
asymptotic efficiency in both well-specified and mis-
specified scenarios. In estimating regression functions
with independent observations, Yang [24] proposed a
similar approach to adaptively achieve asymptotic effi-
ciency for both parametric and nonparametric situations,
by examining whether BIC selects the same model again
and again at different sample sizes (instead of only two
sample sizes used by [23]). Liu and Yang [25] proposed
a method to adaptively choose between AIC and BIC
based on a measure called parametricness index. In the
context of sequential Bayesian model averaging, Erven
et al. [26] and van der Pas and Grünwald [27] used
a switching distribution to encourage early switch to
a better model. Zhang and Yang [28] proposed cross-
validation as a general solution to choosing between AIC
and BIC. The proposed approach was shown to behave
like the better one of AIC and BIC for both the AIC
and BIC territories asymptotically, with a suitably chosen
data splitting ratio.

In this paper, we introduce a new information criterion
which we refer to as the bridge criterion (BC). As we
shall explain in the paper, the philosophy behind the pro-
posed criterion is fundamentally different with the clas-
sical information criteria and their hybrid approaches.
The idea may well be applicable to a broad range of
statistical models, but we focus on autoregressive models
in this paper, and rigorously analyze its asymptotic
performance. The bridge criterion is able to address the
following two issues: First, given a realistic time series
data, an analyst is usually unaware of whether the model
class is well-specified or not; Second, even if the model
class is known to be correct, the order (dimension) is
not known, so that any prescribed finite candidate set
suffers the risk of missing the true model. We show that
BC achieves both consistency when the model class is
well-specified and asymptotic efficiency when the model
class is mis-specified under mild conditions. Recall that
the penalty terms of AIC and BIC (and their variants) are
proportional to L for an autoregressive model of order
L. In contrast, a key element of BC is the expression
1 + 2−1 + · · · + L−1 employed in its penalty term. As
we shall see, the harmonic number is what “bridges”
the features of AIC and BIC automatically. Another
key element is to let L(n)

max grow with sample size at
an appropriate rate. We emphasize that for the well-
specified case, once the true order is selected with prob-
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ability close to one, the resulting predictive performance
is also asymptotically optimal/efficient. From this angle,
the criterion achieves the asymptotic efficiency for both
well-specified and mis-specified cases.

The outline of this paper is given below. In Sec-
tion II, we formulate the problem and introduce some
notation. In Section III, we propose a simplified version
of bridge criterion and give an intuitive interpretation
of it. In Section IV, we establish the consistency and
the asymptotic efficiency property. We formulate an
adjusted bridge criterion that adaptively chooses the
number of candidate models, in order to further improve
the scope of applications. Furthermore, we propose a
concept called parametricness index, in order to measure
the extent to which the specified model class is adequate
in explaining the observed data. Some extensions of
the theoretical analysis are briefly discussed. Numerical
results are given in Section V validating the performance
of our approach (even under small data size). We con-
clude this paper in Section VI. Finally, the appendix
consists of three parts. The first part reviews how we
originally derived the simplified bridge criterion, by
making a connection between sequential hypothesis tests
and information criteria. It serves as another perspective
alternative to what we present in the main body of the
paper. The second part of the appendix includes technical
lemmas and proofs to all our theoretical results. In the
third part, we propose a formula to bound the overfitting
probability of the bridge criterion under finite sample
size.

II. BACKGROUND

A. Problem formulation

Given observations {xt : t = 1, . . . , n}, we consider
the following autoregressive model of order L (L ∈ N)

xt +

L∑
ℓ=1

ψL,ℓxt−ℓ = ϵt, (1)

where ψL,ℓ ∈ R (ℓ = 1, . . . , L), ψL,L ̸= 0, the roots
of the polynomial zL +

∑L
ℓ=1 ψL,ℓz

L−ℓ have modulus
less than 1, and εt’s are independent random noises with
zero mean and variance σ2. The autoregressive model is
referred to as an AR(L) model, and [ψL,1, . . . , ψL,L]

T is
referred to as the stable autoregressive filter ΨL. Let L0

denote the true order, which is considered to be finite
for now. In other words, the data is generated in the way
described by (1) with L = L0. When L0 is unknown, we
assume that {1, . . . , L(n)

max} is the candidate set of orders.
Due to the reasons mentioned in the introduction, we
allow the largest order L(n)

max to increase to infinity with

n in order to reduce prediction errors. We define

N = n− L
(n)
max. (2)

The sample autocovariance vector and matrix are respec-
tively γ̂L = [γ̂1,0, . . . , γ̂L,0]

T, Γ̂L = [γ̂i,j ]
L
i,j=1, where

γ̂i,j = N−1
∑n

t=L
(n)
max+1

xt−ixt−j (0 ≤ i, j ≤ L
(n)
max).

The filter of the autoregressive model of order L can be
estimated by

Ψ̂L = −Γ̂−1
L γ̂L, (3)

which yields consistent estimates [29, Appendix 7.5].
The one-step prediction error is êL =

∑n
t=L

(n)
max+1

(xt +

ψ̂L,1xt−1 + · · · + ψ̂L,Lxt−L)
2/N. For convenience, we

define ê0 = γ̂0,0. The error of the AR(L) model can be
calculated by

êL = ê0 − γ̂T

LΓ̂
−1
L γ̂L. (4)

Let γi−j = E{xt−ixt−j} (i, j ∈ Z) be the autocovari-
ances and ΨL = [ψL,1, . . . , ψL,L]

T be the best linear
predictor of order L. In other words, ΨL (L ≥ 1) is the
minimum of

eL = min
ψ∗

L,1,...,ψ
∗
L,L∈R

E

{(
(xt +

L∑
ℓ=1

ψ∗
L,ℓxt−ℓ

)2}
, (5)

where the expectation is taken with respect to the sta-
tionary process {Xn}. In addition, we define e0 = γ0.
The values of ΨL and eL can be calculated from a set of
equations similar to (3)–(4), by removing the hat symbol
from parameters.

Given an observed time series, one critical problem
is the identification of the (unknown) order of the au-
toregressive model fitted to the data. Suppose that we
generate a time series to simulate an AR(L0) process
using (1). Clearly, ê1 ≥ · · · ≥ êL0−1 ≥ êL0

≥ êL0+1 ≥
· · · ≥ êLmax . Because of (4) and the consistency of ψ̂L,
generally êL is large for L < L0 and is small for L ≥ L0.
If we plot êL against L for L = 1, . . . , Lmax, the curve
is usually decreasing for L < L0 and becomes almost
flat for L > L0. Intuitively, the order L̂ may be selected
such that êL−1/êL becomes “less significant” than its
predecessors for L > L̂. For later convenience, we define
the empirical and theoretical gain of goodness of fit using
AR(L) over AR(L− 1), respectively, as

ĝL = log

(
êL−1

êL

)
, gL = log

(
eL−1

eL

)
. (6)

For time series data that are not permutable, a penal-
ized method is usually adopted which selects L̂ by mini-
mizing log êL plus some penalty term. AIC and BIC are
the state-of-art for autoregressive order selection. They
select L̂ (1 ≤ L̂ ≤ L

(n)
max) that respectively minimizes
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the quantities AIC(n,L) = log êL + 2L/n, BIC(n,L) =
log êL + L log(n)/n. The above forms of AIC and BIC
were originally derived by assuming Gaussian noises,
but they have been widely adopted in a broader context.
Note that AIC and BIC also serve as representatives of
two types of criteria in terms of asymptotic performance
[16], [17]. For example, it was shown that the final
prediction error criterion behaves asymptotically similar
to AIC [19], and the predictive least-squares principle
(when all the past data is considered) behaves like BIC
asymptotically [14], [15]. As we shall see, the water-
shed of AIC and BIC (and their variants) in terms of
asymptotic performance is whether the penalty is a fixed
well-chosen constant or goes to infinity as a function
of n. A detailed discussion in the context of linear
regressions can be found in [17]. As was mentioned
in the introduction, we are interested in developing one
criterion that simultaneously achieves the advantages of
AIC and BIC.

B. Notation

We write hn = Θ(gn) if c < hn/gn < 1/c for some
positive constant c for all sufficiently large n, and hn =
O(gn) if |hn| < cgn for some positive constant c for all
sufficiently large n. If limn→∞ fn/gn = 0, we write f =
on(g), or for brevity, f = o(g). Let ⌊x⌋ denote the largest
integer less than or equal to x. Let N (µ, σ2),B(a, b), χ2

k

respectively denote the normal distribution with density
function f(x) = exp{−(x − µ)2/(2σ2)}/(

√
2πσ), the

Beta distribution with density function f(x) = xa−1(1−
x)b−1/B(a, b), where B(·, ·) is the beta function, and the
chi-square distribution with k degrees of freedom.

The matrix norm ∥·∥ is defined by ∥M∥ =
sup∥y∥2=1∥My∥2, where ∥·∥2 denotes the Euclidean
norm of a column vector. For a positive definite matrix
A, the norm ∥·∥A is defined by ∥y∥A = (yTAy)1/2.
If two vectors y1 = [y1,1, . . . , y1,L1

]T and y2 =
[y2,1, . . . , y2,L2

]T are of different sizes, then we allow
subtraction of those vectors by modifying the defini-
tion in the following way. Given y1, y2, define y′1, y

′
2

as vectors of size L′ = max{L1, L2} by appending
max{L1, L2}−min{L1, L2} zeros to the tail of y1 or y2.
We define subtraction of y1, y2 in this case as y′1 − y′2.
Similarly, if the size of a vector y is smaller than the
dimension of a positive definite matrix A of size k × k,
∥y∥A is the same as ∥y′∥A where y′ is of size k by
appending zeros to the tail of y. For any positive integers
t and m (t > m), we sometimes use xt:t−m to represent
[xt, . . . , xt−m]

T.
We are usually interested in the one-step prediction

error if a mismatch filter, as defined below, is specified

[2], [30]. Assume that the data is generated from a filter
ΨL0

as in (1). The average one-step prediction error
of using filter ΛL minus that of using the true filter is
referred to as mismatch error

E
{
[xt, . . . , xt−L′+1](ΨL0

− ΛL)
}2

= ∥ΛL −ΨL0
∥2ΓL′ .

(7)

where L′ = max{L0, L} and ΓL′ is the L′ × L′

covariance matrix of the true autoregression, namely its
(i, j)th element is γi−j .

III. BRIDGE CRITERION

For easy interpretation, we start by proposing the
simplified bridge criterion, and giving an intuitive ex-
planation of it. We study its theoretical performance and
propose the adjusted bridge criterion in the next section.

The estimated order L̂ by bridge criterion is

L̂ = argmin
1≤L≤L(n)

max

BC(n,L)
∆
= log êL +

2L
(n)
max

N

L∑
k=1

1

k
, (8)

where L
(n)
max is the largest candidate order. L(n)

max must
be selected such that limn→∞ L

(n)
max = ∞, and its rate

of growth will be studied in Section IV. It is well
known that

∑L
k=1 1/k = logL + cE + o(1) for large

L, where cE is the Euler-Mascheroni constant. Fig. 1
illustrates the penalty term given by (8) for different n
and L

(n)
max = ⌊n1/3⌋. Without loss of generality, we can

shift the curves to be at the same position at L = 1.
Fig. 2 illustrates the penalty curves for the Akaike

information criterion, the Bayesian information criterion,
and the simplified bridge criterion, respectively denoted
by

JAIC(L) =
2

n
L, JBIC(L) =

log(n)

n
L,

JBC(L) =
2L

(n)
max

n

L∑
k=1

1

k
,

with n = 1000. Any of the above penalty curves can
be written in the form of

∑L
k=1 tk, and only the slopes

tk (k = 1, . . . , Lmax) matter to the performance of
order selection. For example, suppose that L2 is selected
instead of L1 (L2 > L1) by some criterion. This implies
that the gain of goodness of fit log êL1

− log êL2
is

greater than the sum of slopes
∑L2

k=L1+1 tk. Thus, we
have shifted the curves of the latter three criteria to be
tangent to the bent curve of the bridge criterion in order
to highlight their differences and connections. Here, two
curves are referred to as tangent to each other if one is
above the other and they intersect at one one point, the
tangent point. The tangent points (marked by circles) of
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Fig. 1. A graph showing the penalty term in (8) for sample sizes 100 (small-dash), 300 (dash), and 1000 (solid).

JAIC and JBIC are respectively 9 and 2. Take the curve
JBIC as an example. The meaning of the tangent point
is that BC penalizes more than BIC for k ≤ 2 and
otherwise for k > 2.

Given a sample size n, the tangent point between JBC

and JBIC curves is at TBC:BIC = 2L
(n)
max/ log n. Consider

the example L
(n)
max = ⌊n1/3⌋. If the true order L0 is

finite, TBC:BIC will be larger than L0 for all sufficiently
large n. In other words, there will be an infinitely large
region as n tends to infinity, namely 1 ≤ L ≤ TBC:BIC,
where L0 falls into and where BC penalizes more than
BIC. As a result, asymptotically the bridge criterion does
not overfit. On the other hand, the bridge criterion will
not underfit because the largest penalty preventing from
selecting L+1 versus L is 2L

(n)
max/n, which will be less

than any fixed positive constant gL0
and hence ĝL0

(both
defined in (6)) with high probability for large n. This
reasoning suggests that the bridge criterion is consistent.

The inequality (2L
(n)
max/n)/k ≥ 2/n for any 1 ≤

k ≤ L
(n)
max guarantees that BC penalizes more than

AIC. Since BC penalizes less for larger orders and
finally becomes similar to AIC, it is able to share the
asymptotic optimality of AIC under suitable conditions.
To further illustrate why the bridge criterion is expected
to work well in general, we make the following intuitive
argument about the model selection procedure. As we
shall see, the bent curve of BC well connects BIC and
AIC so that a good balance between the underfitting and
overfitting risks is achieved. The rigorous theory will be
established in Section IV.

A heuristic understanding of the “bridge”:
To gain further intuition, we consider an insect who

is climbing a slope that is determined by a particular
penalty curve J(L) from the starting point L = 1 to
the maximal possible end L = L

(n)
max (Fig. 3). Fig. 3(a)

illustrates JAIC(L) (blue dash) and JBIC(L) (black small
dash).

The climbing scheme and the goal: At each step L,
the insect moves to step L+ 1 if its gain is larger than
its loss, and it will not move any more once it stops.
The gain refers to the increased goodness of fit to the
data (which is ĝL+1 in our autoregressive model), the
loss refers to the penalty of increased model complexity
(which is J(L + 1) − J(L)), and the last step where
the insect stops is denoted by L̂. The goal is to design
a proper slope such that the insect stops at a “desired
destination” that will be elaborated on below.

The tangent points of two slopes: A slope can be
written as

∑L
k=1 tk. The performance of the insect is

determined by each increment tk, and is not affected if
the slope is shifted by any constant that does not depend
on L. We thus shift the curves JAIC(L) and JBIC(L)
to be tangent to the bent curve of JBC(L) if possible.
By our design of JBC(L), the tangent points between
JBC(L) and JAIC(L), JBIC(L) curves are respectively at
steps TBC:AIC = L

(n)
max, TBC:BIC = 2L

(n)
max/ log n. Before

step TBC:BIC, the insect on BC slope suffers more loss
than on BIC slope in each move, while the other way
around after step TBC:BIC. Now we categorize two distinct
scenarios.

The well-specified scenario: The first scenario is
where the desired destination is within finitely many
steps, and the second is where the desired destination
is beyond finitely many steps. In the former case, there
is a clear target step L0. A good slope should be designed
such that the insect stops at step L0. It is already known
in this case that BIC slope is good while AIC slope is
not. In fact, it can be illustrated by Fig. 3(a), in which
the gain after L0 is Op(1)/n, smaller than Θ(log n)/n
while larger than O(1)/n with a positive probability for
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Fig. 2. A graph showing the penalty curves of the bridge criterion (red solid) together with the Akaike information criterion (blue dash),
the Bayesian information criterion (black small dash), and the tangent points (circled) for n = 1000, L(n)

max = ⌊n1/3⌋.

sufficiently large n. How does BC compare? It is worth
mentioning that our argument for the insect is implicitly
built upon n, and the concept of consistency is about
large n asymptotics. Suppose that n keeps increasing,
the aforementioned tangent step TBC:BIC will be not only
larger than L0 but also diverging to infinity given that
log n = o

(
L
(n)
max
)
. In other words, there is the “blackhole”

region [0, TBC:BIC] (Fig. 3(b) and (c)), in which BC
slope is steeper than BIC slope, and which grows to
be infinitely large. It results in two consequences: First,
the insect will find it more and more difficult to escape
from the region because the increased loss from moving
each step needs to be compensated by its gain. Take
the autoregressive models as an example. After moving
each step the gain is approximately independent χ2

1/n,
the expectation of which is less than the AIC penalty in-
crement 2/n. Therefore, the probability of the cumulated
sum of gains being larger than that of loss decreases to
zero rapidly as the number of steps increases. Second,
once the insect is trapped in the blackhole, it encounters
more difficulty to move forward on a BC slope than on
a BIC one. Since on the BIC slope the insect will not
move beyond step L0 (due to the strong consistency of
BIC), on a BC slope it will not, either.

On the other hand, the insect will not stop before step
L0. This occurs because the largest penalty preventing
from moving forward is JBC(1) = o(1), but the gain of
the insect moving from step L to L + 1 when L < L0

is usually at least Θ(1) + op(1) (which is true when
ψL+1,L+1 ̸= 0 in autoregressive models). Therefore, the
insect stops at step L0 on a BC slope.

The mis-specified scenario: The fact that TBC:AIC =

L
(n)
max guarantees that BC slope is always steeper than

AIC slope so that the insect does not move too far.
Because the BC slope is in a concave shape, the insect
moves easier and easier for larger steps. In the case
where the appropriate destination tends to infinity, the
insect will soon move to the tail part of the slope. As
one can see from Fig. 3(c), in the tail part the slope is
designed to be similar to AIC (and it becomes exactly
AIC at the end step L = L

(n)
max), it is possible to share

the asymptotic optimality of AIC.
In summary, the bent curve of the BC well connects

AIC and BIC so that a good balance between the
underfitting and overfitting risks can be achieved. We
emphasize that the above argument does not match
exactly to the rigorous proof, since the decision mak-
ing of the insect is carried out sequentially, while the
aforementioned criteria select L̂ via global optimum.
Nevertheless, the argument for the insect does shed some
light on why BC is likely to perform in the way we
desire: to automatically behave like a consistent one
while the underlying model is well-specified, and an
efficient one otherwise, alleviating the risk caused by
an analyst’s initial prejudice. Besides this, the above
argument does not assume any concrete probabilistic
model, and thus it seems to be a promising criterion
for other statistical inference tasks as well.

IV. PERFORMANCE OF THE BRIDGE CRITERION

In this section, we establish a rigorous theory on
the asymptotic performance of the proposal in (8) and
its adjusted version. We start with basic assumptions
in Subsection IV-A, and prove the consistency and
asymptotic efficiency of the simplified bridge criterion
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Fig. 3. (a) Curve JAIC (blue dash) and JBIC (black small dash), (b) the joint plot of JBC (red thick line) and JAIC, JBIC, by shifting the latter
two to be tangent to JBC at tangent points TBC:AIC, TBC:BIC (circled), in which TBC:AIC < L0, and (c) the evolution of plot (b) to the scenario
TBC:BIC ≥ L0 as n increases

in Subsections IV-B and IV-C, respectively. In Subsec-
tion IV-D, we propose an (adjusted) bridge criterion
and its associated two-step strategy, in order to further
improve the scope of applications. In Subsection IV-E,
we propose a concept which we refer to as the para-
metricness index, in order to assess the confidence that
the selected model can be practically treated as the data-
generating model. In Subsection IV-F, we briefly discuss
the extension of our established results to non-Gaussian
and non-identically distributed noises. In view of the
above intuitive argument, the adjusted criterion works

in the following way.

Let the insect clime on the AIC slope, and record its
ending point L̂AIC; modify the BC increment JBC(L) −
JBC(L− 1) from 2L

(n)
max/(nL) to 2Mn/(nL), where Mn

is slightly smaller than L
(n)
max; let the insect move again

on the BC slope with boundary L̂AIC. In this way, the
insect can still stop at L0 if it is finite, and otherwise
moves faster towards the end L̂AIC as if it were on the
AIC slope.
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A. Notation and assumptions

We will need the following assumptions. Alternative
assumptions that do not require Gaussian noises will be
discussed in Subsection IV-F.

Assumption 1: {xt : t = 1, . . . , n} is a station-
ary Gaussian process that satisfies xt + ψ∞,1xt−1 +
ψ∞,2xt−2 + · · · = εt, where ψ∞,t ∈ R,

∑∞
t=1 |ψ∞,t| <

∞, εt’s are independent and identically distributed ac-
cording to N (0, σ2), and the associated power series
Ψ(z) = 1+ψ∞,1z

−1 +ψ∞,2z
−2 + · · · converges and is

not zero for |z| ≥ 1.
Assumption 2: {L(n)

max} is a sequence of positive inte-
gers such that L(n)

max → ∞ and L(n)
max = o(n1/2) as n tends

to infinity.
Remark 1: Under Assumption 1, we have

0 < γ0 = ∥Γ1∥ ≤ ∥Γ2∥ ≤ · · · ≤ ∥Γ∥ <∞, (9)

where Γ = [γi−j ]
∞
i,j=1 is the infinite dimensional covari-

ance matrix with norm

∥Γ∥ = sup
∥y∥2=1

 ∞∑
i=1

{ ∞∑
j=1

γi−jyj

}2
1/2

.

Here, for a sequence y1, y2, . . ., ∥y∥2 = 1 means y21 +
y22 + · · · = 1.

There can be either finitely or infinitely many nonzero
elements in {ψ∞,1, ψ∞,2, . . .}. Both cases are addressed
in the following two sections.

B. Consistency

In this section, we show that the proposed order
selection criterion is consistent in the well-specified case
(see the assumption below).

Assumption 3: There are only finitely many k such
that ψ∞,k ̸= 0.

Under Assumption 3, we also say that the order of the
autoregressive process is finite, or it is well-specified.

Theorem 1: Suppose that Assumptions 1, 2, 3 hold,
then the bridge criterion is consistent.

Moreover, if L̂ is selected from any finite set of
integers that does not depend on n and that contains
the true order L0, and

lim
n→∞

L
(n)
max

log log n
= ∞, (10)

then L̂ converges not only in probability but also almost
surely to L0.

Remark 2: Theorem 1 proves the consistency of
bridge criterion for a wide range of L(n)

max. In the intuitive
arguments in the previous section, we let L(n)

max/ log n→

∞ as n→ ∞. But as our proof indicates, it is not nec-
essary for proving consistency. For strong consistency,
however, L(n)

max/ log log n → ∞ is needed to apply the
law of the iterated logarithm. Note that the upper limit
of L(n)

max, n1/2, is a common bound to prevent excessive
estimation variances [19], [20]. The proof of Theorem 1
is given in the appendix.

C. Asymptotic efficiency

In this section, we show that the proposed order
selection criterion can asymptotically minimize the mis-
match error in the mis-specified case (see the assumption
below).

Assumption 4: There are infinitely many k such that
ψ∞,k ̸= 0.

Under Assumption 4, we also say that the order of the
autoregressive process is infinite, or it is mis-specified.

Remark 3: Assumption 4 has been assumed in some
technical lemmas in [19] that we are going to introduce.
For those lemmas and the scope of this paper, Assump-
tion 4 can be generalized to allow for the case where the
order of the autoregressive process, denoted by L0(n), is
finite but increases to infinity as n tends to infinity. Thus,
the data generating process varies with n. In that case,
our technical proofs (in the appendix) are still applicable
as long as we assume the divergence of L∗

n (introduced
below) as n tends to infinity.

We define the cost function Cn(L) = Lσ2/N+∥ΨL−
Ψ∞∥2Γ (where N has been defined in (2)). It can be
regarded as the expected mismatch error if an estimated
filter of order L is used for prediction. In fact, under
Assumptions 1, 2, 4, it holds that [19, Proposition 3.2]

lim
n→∞

max
1≤L≤L(n)

max

∣∣∣∣∥Ψ̂L −Ψ∞∥2Γ
Cn(L)

− 1

∣∣∣∣ = 0 in probability.

(11)

Moreover, if we use {L∗
n} to denote a sequence of

positive integers that achieves the minimum of Cn(L)
for each n, namely L∗

n = argmin1≤L≤L(n)
max
Cn(L),

then for any random variable L̃ possibly depending on
{xt : t = 1, . . . , n}, and for any ϵ > 0, it holds that
limn→∞ pr

{
∥Ψ̂L̃ − Ψ∞∥2Γ/Cn(L∗

n) ≥ 1 − ϵ
}
= 1 [19,

Theorem 3.2]. The result shows that the cost of the
estimate Ψ̂(L̃) is no less than Cn(L∗

n) in probability for
any order selection L̃. An order selection L̃ is called
asymptotically efficient if

lim
n→∞

∥Ψ̂L̃ −Ψ∞∥2Γ
Cn(L∗

n)
= 1 in probability. (12)

Equality (12) can be equivalently written as
limn→∞Cn(L̃)/Cn(L

∗
n) = 1 in probability in view
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of Equality (11). The following result establishes the
asymptotic efficiency of bridge criterion in two common
scenarios, where the mismatch error ∥ΨL − Ψ∞∥2Γ
decays algebraically or exponentially in L. The two
cases cover a wide range of linear processes as we point
out in Remark 4. Its proof is given in the appendix.

Proposition 1: Suppose that Assumptions 1, 2, 4 hold.

1) Suppose that the mismatch error ∥ΨL − Ψ∞∥2Γ
satisfies

log∥ΨL −Ψ∞∥2Γ = −γ logL+ log cL (13)

where γ ≥ 1 is a constant, and the series {cL : L =
1, 2, . . .} is lower bounded by a positive constant
and cL+1/cL < 1 + γ/(L+ 1). If

L
(n)
max = O

(
n

1

1+γ
−ε
)

(14)

holds for a fixed constant 0 < ε < 1/(1 + γ), then
the bridge order selection criterion is asymptotically
efficient.

2) Suppose that the mismatch error satisfies the equal-
ity

log∥ΨL −Ψ∞∥2Γ = −γL+ log cL (15)

where γ > 0 is a constant, and the series {cL : L =
1, 2, . . .} is lower bounded by a positive constant
and cL+1/cL ≤ q for some constant q < exp(γ). If

L
(n)
max ≤ 1− ε

γ
log n (16)

holds for a fixed constant 0 < ε < 1, then the bridge
order selection criterion is asymptotically efficient.

Remark 4: To provide an intuition of condition (13),
in view of Remark 3 we prove that if the order of autore-
gressive process is not infinity but L0(n) (which grows
with n) instead, and if ΨL0(n) is uniformly distributed
in the space of all stable filters of order L0(n) (for any
given n), then for large L (1 ≤ L ≤ L0(n))

E
{
log∥ΨL −ΨL0(n)∥

2
ΓL0(n)

}
= − logL+ logL0(n) + o(1) (17)

as L tends to infinity. More discussions on the above
uniform distribution and the proof of (17) are given in
the appendix.

Furthermore, it is known that condition (15) holds
(with constant series cL) when the data is generated from
a finite order moving-average process [19].

We note that the proposed bridge criterion in (8) is not
fully satisfactory in terms of asymptotic efficiency. For
BC to achieve efficiency, our Proposition 1 requires L(n)

max

to satisfy (14) or (16) depending on the underlying mis-

match error. This poses two concerns: first, the mismatch
error as a function of L is usually unknown in advance,
and it can be more complex than those characterized
by (13) and (15); second, the chosen L

(n)
max is not large

enough to incorporate all possible competitive models
into the candidate set; this is because L(n)

max is ε-away (in
terms of the order) to the minimum of Cn(L) over all
positive integers L ∈ N (though for an arbitrarily small
ε). This has motivated us to adjust the bridge criterion
in such a way that 1) it relaxes the conditions required
by (13) and (15), and 2) it selects the optimal order
from a broad candidate set, and 3) it still achieves either
consistency in well-specified cases or efficiency in mis-
specified cases.

D. Adaptive selection of L(n)
max

To achieve the aforementioned goal, we propose a
general strategy that consists of two steps.
1. choose any L

(n)
max = o(

√
n) and apply AIC to obtain

L̂AIC;
2. within the range 1, 2, . . . , L̂AIC, select the optimal

order (denoted by L̂BC) by minimizing the BC penalty

BC(n,L) = log êL +
2Mn

n

L∑
k=1

1

k
(18)

where {Mn} is a deterministic sequence to be chosen.
We note that Mn = L

(n)
max was chosen in the previous

sections, but it may not be the ideal choice in our two-
stage approach, as we shall see later. An intuition of the
above bridge criterion in view of the “tale of an insect”
has been made at the beginning of this section. The range
of admissible L(n)

max is rather wide, as we pointed out in
Remark 2.

We define L
(n)
0 = argminL∈NCn(L) to be the the

truly optimal order without restrictions on L. In the rest
of this section, we consider that the L(n)

max is chosen large
enough so that L(n)

0 is included, i.e., L(n)
0 ≤ L

(n)
max.

Assumption 5: In the mis-specified scenario, it holds
that L(n)

0 ≤ L
(n)
max. In addition, Cn(L) is regular in the

sense that if limn→∞Cn(Ln)/Cn(L
(n)
0 ) = 1 holds for a

sequence Ln, then limn→∞ Ln/L
(n)
0 = 1.

Remark 5: The efficiency of AIC under mis-specified
model implies that limn→∞Cn(L̂AIC)/Cn(L

(n)
0 ) = 1 in

probability. Given Assumption 5, it further implies that

lim
n→∞

L̂AIC

L
(n)
0

= 1 in probability. (19)

Assumption 5 typically holds for familiar nonpara-
metric cases. For example, we consider two common
scenarios that were also described in Proposition 1:
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the mismatch error has an algebraic decay ∥ΨL −
Ψ∞∥2Γ = cL−γ , or an exponential decay ∥ΨL−Ψ∞∥2Γ =

c exp(−γL). We let qn = Ln/L
(n)
0 . Via straightforward

calculation, limn→∞Cn(Ln)/Cn(L
(n)
0 ) = 1 can be

rewritten as limn→∞ q−γn (1 + γqγ+1
n )/(1 + γ) = 1 in

the case of algebraic decay, and it can be rewritten as
limn→∞ exp{−γ(Ln−L

(n)
0 )}/(1 + γL

(n)
0 ) + γLn/(1 +

γL
(n)
0 ) = 1 in the case of exponential decay. In both

cases, it follows that limn→∞ qn = 1 in probability.
The following theorem establishes the consistency and

efficiency of the two-stage strategy.
Theorem 2: Suppose that L̂AIC is obtained from the

first step of the two-step strategy, and Assumptions 1, 2
hold, Mn → ∞ as n → ∞. Suppose that under a mis-
specified model class, Assumption 5 holds, and for all
sufficiently large n

Mn ≤ qL
(n)
0

logL
(n)
0

, (20)

where 0 < q < 1 is some constant. Then the bridge
criterion in (18) is consistent in the well-specified case
and efficient in the mis-specified case.

Moreover, if in the well-specified case L̂ is se-
lected from a finite candidate set that does not de-
pend on n and that contains the true order L0, and
limn→∞Mn/ log log n = ∞, then L̂ converges almost
surely to L0.

Remark 6: Recall that if the bridge criterion is con-
sistent in the well-specified case and efficient in the mis-
specified case, then it is efficient in both cases. We note
that restrictions on Mn are fairly weak. For instance,
L
(n)
0 is respectively Θ(nr) (0 < r < 1) and Θ(log n)

in the two cases described in Proposition 1, so we may
choose Mn = (log n)τ with any 0 < τ < 1.

Remark 7: We provide an intuitive reasoning here. In
the well-specified scenario, Mn → ∞ guarantees consis-
tency due to Theorem 1. In the mis-specified scenario,
(19) and (20) imply that Mn < L̂AIC/ log L̂AIC. Such Mn

produces penalty increments JBC(L + 1) − JBC(L) that
are lighter than AIC for large L (recall that the candidate
set in the second step is 1, . . . , L̂AIC). In view of that, BC
produces L̂ that is close to the boundary L̂AIC.

Remark 8: Another form of the bridge criterion is
written as

BC(n,L) =
2Mn

n

L∑
k=1

k−ζ (21)

where ζ > 0, ζ ̸= 1. By a similar proof, it can be shown
that Theorem 2 can be modified to the case 0 < ζ < 1 by
requiring the following changes: replace L(n)

0 / logL
(n)
0

with (L
(n)
0 )ζ in (20), and require q < 1 − ζ. Moreover,

Theorem 2 can be modified to the case ζ > 1 by
replacing L

(n)
0 / logL

(n)
0 with L

(n)
0 /a(ζ) in (20), where

a(ζ) =
∑∞

k=1 k
−ζ . As a possible future work, it would

be interesting to compare the performance of ζ = 1 and
ζ ̸= 1.

E. Parametricness index

Building upon the proposed bridge criterion, we define
the following parametricness index (PI):

PIn =


|L̂BC − L̂AIC|

|L̂BC − L̂AIC|+ |L̂BC − L̂BIC|
if L̂AIC ̸= L̂BIC

1 otherwise.
(22)

Following the definition, PIn ∈ [0, 1]. Intuitively, PIn
is close to one in the well-specified model class where
L̂BC, L̂BIC do not differ much, while close to zero in a
mis-specified one where L̂BC, L̂AIC are close and much
larger than L̂BIC. The goal of PI is to measure the
extent to which the specified model class is adequate
in explaining the observed data, namely to assess the
confidence that the selected model can be practically
treated as the data-generating model. The larger PIn, the
more confidence. Similar concept has been introduced in
[25] for the goal of estimating the regression function.
The following proposition shows that PIn converges in
probability to one for the well-specified case. Though
we cannot prove that PIn converges in probability to zero
for various mis-specified cases in general, for illustration
purpose we prove for some typical mis-specified cases.
Experiments on various synthetic data in Section V have
shown that PIn performs in the way we expected.

Proposition 2: Under the same conditions of Theo-
rem 2, if the model class is well-specified, PIn converges
in probability to one as n goes to infinity; If the
model class is mis-specified, and we further assume that
Cn(L) + (log n − 2)Lσ2/N achieves its minimum at
L
(n)
∗ and limn→∞ L

(n)
∗ /L

(n)
0 = 0, then PIn converges

in probability to zero as n goes to infinity. In particular,
the above condition holds if the mismatch error satisfies
∥ΨL − Ψ∞∥2Γ = cL−γ , where γ and c are positive
constants.

F. Relaxation of the assumption on noises

In the aforementioned theoretical results, we have
used Assumptions 1 and 2 that assume i.i.d. Gaussian
noises. In this subsection, we discuss a set of alternative
assumptions that does not require normality or identical
distribution, but at the cost of a slightly stronger condi-
tion on the AR coefficients.
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Assumption 1′: {xt : t = 1, . . . , n} is a stationary
process that satisfies xt+ψ∞,1xt−1+ψ∞,2xt−2+ · · · =
εt, where ψ∞,t ∈ R,

∑∞
t=1 |t1/2ψ∞,t| < ∞, and

the associated power series Ψ(z) = 1 + ψ∞,1z
−1 +

ψ∞,2z
−2+· · · converges and is not zero for |z| ≥ 1. The

noises εt’s are independent with zero mean and variance
σ2, and satisfy

sup
−∞<t<∞

E|et|8 <∞. (23)

Let Ft denote the cumulative distribution function of et.
There exist constants c0, δ0 > 0 and a ∈ (0, 1] such that
for all |x− y| < δ0,

sup
−∞<t<∞

|Ft(x)− Ft(y)| ≤ c0|x− y|a. (24)

Assumption 2′: {L(n)
max} is a sequence of positive in-

tegers such that c1 ≤ L
(n)
max/n1/(2+δ) ≤ c2 for some

constants c1, c2, δ > 0.
Remark 9: In Assumption 1, the condition on ψ∞,t

implies that xt admits an infinite moving-average repre-
sentation xt =

∑∞
j=0 ϕjet−j , where ϕ0 = 1 and {ϕj}

are absolutely summable. The stronger Assumption 1′

implies that {j1/2ϕj} are absolutely summable. We refer
to [20] for more discussions. The choices of L(n)

max in
Assumption 2′ is slightly more restrictive than before.
However, we now require much weaker conditions on
the noises. Sufficient conditions to guarantee (23) and
(24) are: ei’s are identically distributed, the moment
generating function exists and the density function is
bounded.

It has been shown by Ing and Wei [20, Lemmas
3&5] that Assumptions 1′ and 2′ lead to counterparts
of Lemma 3.4 and Proposition 3.2 in [19] under As-
sumptions 1 and 2, which we have used in the proof of
previous results.

In the sequel, we provide a counterpart of Theorem 2
under the alternative set of assumptions. Other theorems
and propositions can be extended accordingly, but we do
not elaborate.

Theorem 3: Under the same assumptions of Theo-
rem 2, except that Assumptions 1, 2 are replaced with
Assumptions 1′, 2′, the bridge criterion in (18) is consis-
tent in the well-specified case and efficient in the mis-
specified case.

V. NUMERICAL RESULTS

In this section, we present experimental results to
demonstrate the theoretical results and the advantages
of bridge criterion on both synthetic and real-world
datasets. Throughout the experiments, we use the two-

step bridge criterion defined in (18), and we adopt

L
(n)
max = ⌊n1/3⌋, Mn = (log n)0.9 (25)

due to Theorem 2 and Remark 6, where n is the sample
size.

A. Synthetic data experiment: consistency in finitely di-
mensional model

The purpose of this experiment is to show the con-
sistency of BC and BIC. The performance of BC, AIC,
and BIC in terms of order selection for the well-specified
model class is summarized in Table I. In Table I, the data
is simulated using autoregressive filters Ψ2 = [α, α2]T

for α = 0.3,−0.3, 0.8,−0.8. For each α, the estimated
orders are tabulated for 1000 independent realizations
of AR(2) processes xt + αxt−1 + α2xt−2 = ϵt, ϵt ∼
N (0, 1). The experiment is repeated for different sample
sizes n = 100, 500, 1000, 10000. As was expected, the
performance of the bridge criterion lies in between AIC
and BIC, and it is consistent when n tends to infinity.
Moreover, the convergence for α = 0.3,−0.3 is slightly
slower compared with α = 0.8,−0.8, because of their
smaller signal to noise ratios.

B. Synthetic data experiment: efficiency in finitely and
infinitely dimensional models

The purpose of this experiment is to show that the
proposed criterion achieves the asymptotic efficiency for
both the well-specified and the mis-specified cases. The
performance of BC in terms of mismatch error is com-
pared with those of AIC and BIC in Table II. Recall that
the mismatch error defined in (7) is the expected one-
step ahead prediction error minus the variance of noise,
when an estimated filter is applied to an independent and
identically generated dataset. We consider three different
data generating processes below. In Table II, for each
case and sample size n = 100, 500, 1000, 10000, the
tabulated mismatch error produced by each criteria were
the mean of 1000 repeated independent experiments. The
mean parametricness index defined in Subsection IV-E
(denoted by PIn) in each case was also tabulated.

Case 1: The first case is AR(1) with Ψ1 = [0.9],
namely xt + 0.9xt−1 = ϵt, ϵt ∼ N (0, 1). This is a well-
specified model. As we can see, once the true order
is selected with probability close to one, the resulting
predictive performance is also asymptotically optimal.

Here, we briefly explain how to calculate the exact
mismatch error in (7) for any estimated filter of size L
that may or may not equal to L0. If suffices to express
the covariance matrix ΓL′ or its elements γ0, . . . , γL′−1

in terms of the known ΨL0
, where L′ = max{L0, L}.
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n =100 n =500 n =1000 n=10000
α L̂ BC AIC BIC BC AIC BIC BC AIC BIC BC AIC BIC

0.3

1 784 548 851 558 213 661 298 51 405 0 0 0
2 151 292 135 372 558 333 619 677 589 949 720 999
3 36 98 13 37 113 5 38 125 5 21 97 1
> 3 29 62 1 33 116 1 45 147 1 30 183 0

−0.3

1 777 566 845 535 208 628 297 45 375 0 0 0
2 166 301 145 392 536 365 624 688 617 958 719 997
3 28 64 8 32 110 6 32 112 7 22 122 3
> 3 29 69 2 41 146 1 47 155 1 20 159 0

0.8

1 0 0 0 0 0 0 0 0 0 0 0 0
2 823 749 957 891 734 988 906 715 992 944 726 998
3 102 148 36 44 125 11 41 118 8 24 102 2
> 3 75 103 7 65 141 1 53 167 0 32 172 0

−0.8

1 0 0 0 0 0 0 0 0 0 0 0 0
2 860 783 968 876 738 980 878 709 994 949 703 999
3 82 127 29 54 112 18 55 133 5 23 115 1
> 3 58 90 3 70 150 2 67 158 1 28 182 0

TABLE I: Selected orders for AR(2) processes, computed from 1000 realizations for each α and n (with L̂ = 2
line in bold)

We define the correlation vector and matrix by ρL0
=

[γ1/γ0, . . . , γL0
/γ0]

T, PL0
= ΓL0

/γ0. By rewriting the
Yule-Walker equation PL0

ΨL0
= −ρL0

, we obtain (I +
ΦL0

) ρL0
= −ΨL0

where

ΦL0 =


ψL0,2 ψL0,3 · · · ψL0,L0−1 ψL0,L0 0
ψL0,3 ψL0,4 · · · ψL0,L0 0 0

...
...

...
...

...
...

ψL0,L0 0 · · · 0 0 0
0 0 · · · 0 0 0



+


0 0 · · · 0 0 0

ψL0,1 0 · · · 0 0 0
...

...
...

...
...

...
ψL0,L0−2 ψL0,L0−3 · · · ψL0,1 0 0
ψL0,L0−1 ψL0,L0−2 · · · ψL0,2 ψL0,1 0

 .

We thus obtain ρL0
= −(I+ΦL0

)−1ΨL0
, γ0 = σ2/(1+

ρT

L0
ΨL0

), and γℓ = γ0ρL0,ℓ (ℓ = 1, . . . , L0). Further-
more, for each ℓ > L0, γℓ equals to −

∑L0

k=1ΨL0,kγℓ−k.
Case 2: The second case is AR(L0(n)) with

L0(n) = ⌊n0.4⌋ and ΨL0(n) = [0.7k]
L0(n)
k=1 , namely

xt+ψL0(n),1xt−1+ · · ·+ψL0(n),L0(n)xt−L0(n) = ϵt, ϵt ∼
N (0, 1). This is the case where the true order is large in
terms of sample size, and thus it can be treated as the
infinite dimensional model (see Remark 3). Note that all
the roots of each characteristic polynomial have modulus
0.7. For each sample size n = 100, 500, 1000, 10000,
the true order that generated the autoregression is
6, 12, 15, 39, respectively.

Case 3: The third case is the first order moving

average process xt = ϵt− 0.8ϵt−1, ϵt ∼ N (0, 1). It is an
autoregression with infinite order. The exact mismatch
error of an estimated filter ΛL could be calculated
in the following way: ∥ΛL − Ψ∞∥2Γ∞

= E
{
xt+1 +

[xt, . . . , xt−L+1]ΛL
}2} − σ2 = 1.64(1 + ∥ΛL∥22) − 2 ·

0.8 (ΛL,1+
∑L−1

k=1 ΛL,kΛL,k+1)−1, where we have used
E(x2t ) = 1.64, E(xtxt−1) = −0.8, and E(xtxt−k) = 0
for k > 1.

In summary, Table I and II show that BC achieves
the performance that we had expected: it is consistent
when the model class is well-specified, and its predictive
performance is always close to the optimum of AIC
and BIC in both well-specified and mis-specified cases.
In practice when no prior knowledge about the model
specification is available, the proposed method is more
flexible and reliable than AIC and BIC in selecting the
most appropriate dimension.

C. Real data experiment: the El Nino data from 1935 to
2015

As the largest climate pattern, El Nino serves as the
most dominant factor of oceanic influence on climate.
The NINO3 index, defined as the area averaged sea
surface temperature from 5◦S-5◦N and 150◦W-90◦W, is
calculated from HadISST1 within the range of January
1935 to May 2015 [31]. The monthly data with overall
965 points is shown in Fig. 4(a). The data seems to be
highly dependent from its sample partial autocorrelations
shown in Fig. 4(b).
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Case
n =100 n =500

BC AIC BIC PIn BC AIC BIC PIn

1
19.7 28.6 16.6 0.96 2.9 5.7 2.4 0.97

(1.13) (1.28) (1.01) (0.0061) (0.18) (0.26) (0.13) (0.0050)

2
76.7 71.9 94.2 0.58 17.6 17.5 25.2 0.29

(1.24) (1.08) (1.33) (0.016) (0.25) (0.24) (0.33) (0.014)

3
97.8 94.7 122.8 0.58 26.6 26.6 38.0 0.32

(1.28) (1.12) (1.55) (0.016) (0.27) (0.27) (0.41) (0.015)

Case
n =1000 n =10000

BC AIC BIC PIn BC AIC BIC PIn

1
1.6 3.4 1.3 0.98 0.11 0.39 0.10 0.99

(0.11) (0.15) (0.065) (0.0047) (0.012) (0.020) 0.0049 (0.0033)

2
9.9 9.9 14.6 0.18 1.4 1.4 2.1 0.11

(0.13) (0.13) (0.18) 0.012 (0.019) (0.019) (0.025) (0.0097)

3
14.6 14.6 22.1 0.21 2.02 2.02 3.19 0.032

(0.15) (0.15) (0.24) (0.013) (0.021) (0.021) (0.032) (0.0056)

TABLE II: Mismatch errors (and their standard errors) of autoregressive models selected by BC, AIC, and BIC,
along with the parametricness index, in three different cases (values except PIn and its standard errors were rescaled
by 103)

To evaluate the predictive power of BC, AIC, and BIC,
ideally we would apply each estimated filter to indepen-
dent and identically generated datasets as we have done
in the synthetic data experiments. But it is not realistic
to apply this cross-validation to a single real-world time
series data. As an alternative, we adopt a prequential
perspective [20], [32], and evaluate the criteria in terms
of the one-step prediction errors conditioning only on
the past data at each time. Specifically, we start from an
initial time step, say n0 = 200, and obtain an estimated
AR filter ψ̂L(C) from the first 200 points under each
criterion C. Upon the arrival of (n = n0 + 1)th point,
the one-step prediction error is revealed to be ên(C) =
(xn− [xn−1, . . . , xn−L]ψ̂L)

2. This procedure is repeated
for n = n0 + 2, . . . , 965, each time the AR filter being
estimated from the observed n − 1 data points and the
tuning parameters being L(n)

max = ⌊n1/3⌋,Mn = (log n)0.9

(note that the n in (25) is the available sample size).
The cumulated average prediction error at each n is
computed to be en(C) =

∑n
t=n0+1 êt(C)/(n − n0). To

highlight the differences of en(C) for C = BC, AIC, BIC,
we have plotted the normalized curve en(C) − en(opt)
in Fig. 4(c), where en(opt) = min{en(AIC), en(BIC)}
for each n = n0 + 1, n0 + 2, . . .. In order to show
predictive power that may vary at different time epochs,
We have also plotted in Fig. 4(d) the (normalized)
average prediction errors over a moving window of size
100, namely e0n(C) =

∑n
t=s+1 êt(C)/(n − s) where

s = max{n0, n− 100}.

Moreover, in order to capture potential dynamics
during different time epochs, we have also considered
the estimation from a moving window of size n0.
Specifically, we start from the same initial time step
n0 = 200, and for each n = n0 + 1, n0 + 2, . . ., the
AR filters are estimated from only n − n0, . . . , n − 1

with L
(n)
max = ⌊n1/30 ⌋,Mn = (log n0)

0.9 (note that the
n in (25) was replaced by the available sample size
n0). Similarly, we computed the one-step prediction er-
rors, the normalized cumulated average prediction errors
(plotted in Fig. 4(e)), and the normalized windowed
average prediction errors (plotted in Fig. 4(f)). Fig. 4(c)-
(f) show that the performance of BC is close to AIC and
outperforms BIC in general.

D. Real data experiment: the English temperature data
from 1659 to 2014

In this experiment, we study the monthly English
temperature data from 1659 to 2014 used by [33], which
is perhaps the longest recorded environmental data in
human history. We have pre-processed the raw data by
subtracting each month by the average of that month
over the 356 years. The de-seasoned data (with overall
4272 points) is plotted in Fig. 5(a). Its sample partial
autocorrelations are shown in Fig. 5(b). In order to
capture potential dynamics during such a long period,
we adopt the prequential approach that was used to draw
Fig. 4(f), and omit the counterpart of Fig. 4(c)(d)(e).
Specifically, we started from n0 = 500, and for each
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Fig. 4. (a) The monthly NINO3 index from January 1935 to May 2015; (b) the sample partial autocorrelations of the complete data with
95% confidence bounds; (c) the normalized cumulated average prediction error at each time step (using all the current observations); (d) the
normalized average prediction error over the recent window of size 100 (using all the current observations); (e) the normalized cumulated
average prediction error (using the recent n0 observations); (f) the normalized average prediction error over the recent window of size 100
(using the recent n0 observations). In subfigures (c)-(f), BC, AIC, and BIC are respectively marked in red, blue, and black, and the curves
have been normalized by subtracting the minimum of AIC curve and BIC curve.

n = n0 + 1, . . . , 4272 the one-step ahead prediction
was made by an AR filter produced from the recent
window of n0 observations. The prediction errors ên
were averaged over a fixed window of size 100, namely
e0n(C) =

∑n
t=s+1 êt(C)/(n−s) where s = max{n0, n−

100}. We have plotted in Fig. 5(c) the normalized
average prediction errors, which is e0n(C) − e0n(opt)
where e0n(opt) = min{e0n(AIC), e0n(BIC)} (similar as
before). We highlight the normalized average prediction
errors within the range n = n0 + 500, . . . , n0 + 1500
in Fig. 5(d). In this experiment, AIC is not constantly
superior to BIC, and BC adaptively chooses to be close to
the optimum of AIC and BIC. Furthermore, BC achieves
the best predictive performance in some regions. The
results show that BC is more flexible and reliable than
AIC and BIC in practical applications. Note that we
have adopted a specific choice of L(n)

max and Mn (see
(25)) throughout all the synthetic and real-world data
experiments. In practice, an analyst may achieve much
better predictive performance of BC, by fine tuning L(n)

max

and Mn for any particular real dataset.

VI. CONCLUDING REMARKS

There have been many debates on which of AIC and
BIC should be used. A practitioner who supports AIC
may argue that all models are wrong, and thus it is
safe to choose AIC that generally performs better in
mis-specified situations. In contrast, a practitioner who
supports BIC is usually in favor of the mathematically
appealing “consistency” property and is quite confident
that the candidate set of models contains the true (or
practically a very good) model, or simply has a strong
preference of parsimony in modeling. However, the
debate is aroused due to the underlying assumption that
tends to be overlooked: a practitioner should choose
either AIC or BIC before even looking at the observed
data—if some model specification test were done, the
practitioner might have changed his/her prejudice. In a
certain sense, the bent curve of bridge criterion, different
from straight lines, was designed to mimic a sequence
of model specification test which continuously check
“whether there exists a finite dimension L0 underlying
the observed data”. For practical situations where there
is no prior information, bridge criterion provides a prac-
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Fig. 5. (a) The de-seasoned data; (b) the sample partial autocorrelations of the complete data with 95% confidence bounds; (c) the normalized
cumulated average prediction error at each time step (using the recent n0 observations); (d) the normalized average prediction error over the
recent window of size 100 (using the recent n0 observations). In subfigures (c)-(d), BC, AIC, and BIC are respectively marked in red, blue,
and black, and the curves have been normalized by subtracting the minimum of AIC curve and BIC curve.

titioner with opportunities to change or reinforce his/her
belief in the model specification.

Based on the new criterion, we also proposed a
parametricness index to measure the confidence that the
selected model can be practically treated as the data-
generating model. We established a rigorous theory for
the application of the bridge criterion to autoregressive
order selection. But the related ideas do not depend on
specific model classes.

As a possible future work, it would be interesting
to see in what extent the bridge criterion can be ex-
tended to other model selection problems, for instance
the vector autoregressive model, autoregressive-moving-
average model, autoregressive conditional heteroskedas-
ticity model, and generalized linear model.

ACKNOWLEDGEMENT

The authors thank Peng Ding, Kathryn Heal, and
Jiannan Lu for their suggestions in improving the pre-
sentation of this paper. The authors also thank Associate
Editor Negar Kiyavash and two anonymous reviewers
for their reviewing the paper and providing insightful
comments.

APPENDIX

In the appendix, we begin by discussing an alternative
perspective on where the harmonic “bridge” comes from.
To that purpose, a new theorem and its proof will
be given. Then, we provide some necessary technical
lemmas, and prove Theorem 1, Proposition 1, Remark 4,
Theorem 2, Proposition 2, and Theorem 3. Finally, we
propose a formula to bound the overfitting probability of
the bridge criterion under finite sample size.

APPENDIX A
A DERIVATION OF THE BRIDGE CRITERION:

AN ALTERNATIVE PERSPECTIVE

In Section III and the beginning of Section IV, we
made an intuitive tale about how the “bridge” works. In
this section, we include a derivation of the bridge, which
provides an interesting alternative perspective and which
originally motivated us.

A. Motivation

Distinct from AIC or BIC, the new criterion was
initially derived from some perspectives unique to au-
toregressions. The BC was initially motivated by pos-
tulating that nature randomly draws the coefficients of
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true autoregressions from a non-informative uniform
distribution and by fixing the type I error in a sequence
of hypothesis tests on the order.

Recall our definitions of ĝL and gL in Section II.
Suppose that the data is generated by a stable filter ΨL0

of order L0. For any positive integer L that is greater than
L0 and does not depend on n, it was shown by [34, Theo-
rem 5.6.2 and 5.6.3] that

√
n[ψ̂L0+1,L0+1, . . . , ψ̂L,L]

T has
a limiting joint-normal distribution N (0, I) as n tends to
infinity, where I denotes the identity matrix. Moreover,
the random variables nĝL (L = L0 + 1, . . . , Lmax) are
asymptotically independent and distributed according to
χ2
1, where Lmax > L0 is a constant that does not depend

on n [18]. Next, we revisit AIC and BIC by associating
them with a sequence of hypothesis tests. The purpose
of the argument below is to motivate our new criterion.

Test: We choose a fixed number 0 < q < 1 as the
significance level (or the type I error), and thresholds s
such that q = pr(W > s), where W ∼ χ2

1. Consider the
hypothesis test

H0 : L0 = L− 1 H1 : L0 ≥ L. (26)

If nĝL > s (or equivalently s/n − ĝL < 0), we reject
H0 and replace L − 1 by L, for L = 2, 3, . . . until
L = Lmax or H0 is not rejected. One limitation of this
hypothesis test technique is that it may produce extreme
values, as was pointed out in [30]. A straightforward
alternative solution would be to select the L such that
the aggregation of s/n− ĝ1, . . . , s/n− ĝL is minimized,
i.e., to select the global minimum:

L̂ = argmin
1≤L≤Lmax

L∑
k=1

( s
n
− ĝk

)
= argmin

1≤L≤Lmax

(
log êL +

sL

n
− log ê0

)
, (27)

the objective function of which can be regarded as
the goodness of fit êL plus the penalty of the model
complexity. The penalty term is a sum of thresholds s
and − log ê0. The term − log ê0 does not depend on
L, so it has no effect on the produced result and is
negligible. The Akaike information criterion has penalty
term 2L/n. It corresponds to the above hypothesis tests
with q =0.1573 . The Bayesian information criterion
has penalty term L log(n)/n. It corresponds to the
hypothesis tests with varying q. As an illustration, the
significance levels q of BIC under different sample sizes
are tabulated in Table III.

To motivate our new criterion, suppose that nature
generates the data from an AR(L0) process, which is in
turn randomly generated from the uniform distribution
UL0

. Here, UL is defined over the space of all the stable

n 100 500 1000 2000 10000
q 0.0319 0.0127 0.0086 0.0058 0.0024

TABLE III: Significance level q of the Bayesian infor-
mation criterion at different sample sizes

AR filters of order L whose roots have modulus no larger
than r (0 < r ≤ 1):

SL(r) =

{
ΨL : zL +

L∑
ℓ=1

ψL,ℓz
L−ℓ =

L∏
ℓ=1

(z − aℓ),

ψL,ℓ ∈ R, |aℓ| ≤ r, ℓ = 1, . . . , L

}
. (28)

Under this data generating procedure, gL is a random
variable with distribution described by the following
theorem. For the sake of continuity, we postpone a
detailed discussion on UL0

to Subsection A-C.
Theorem 4: Suppose that ΨL0

is uniformly distributed
in SL0

(1). Then, ψ1,1, . . . , ψL0,L0
are independently dis-

tributed according to (ψL,L+1)/2 ∼ B(⌊L/2+1⌋, ⌊(L+
1)/2⌋) (L = 1, . . . , L0). Furthermore, Lψ2

L,L and LgL
converge in distribution to χ2

1 as L tends to infinity.
Similarly, we postulate hypothesis tests in the opposite

direction (for a given Lmax):

H0 : L0 = L H1 : L0 ≤ L− 1. (29)

Under the null hypothesis, gL ̸= 0 almost surely, and
we approximate the distribution of ĝL by that of gL. We
choose a fixed number 0 < p < 1 as the significance
level, and the associated thresholds hL at order L such
that p = pr(gL < hL), or equivalently

hL = F−1
gL (p) (30)

where F−1
gL (·) denotes the inverse function of the cu-

mulative distribution function of gL. If ĝL < hL (or
equivalently ĝL − hL < 0), we reject H0 and replace
L by L − 1, for L = Lmax, Lmax − 1, . . . until L = 2
or H0 is not rejected. Likewise, the L that minimizes
the following objective function can be chosen as the
optimal order

L̂ = argmin
1≤L≤Lmax

Lmax∑
k=L+1

(ĝk − hk)

= argmin
1≤L≤Lmax

(
log êL +

L∑
k=1

hk + c

)
(31)

where c = −(log êLmax +
∑Lmax

k=1 hk) does not depend on
L. The next subsection introduces the proposed criterion
motivated by (31).
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B. Proposed criterion

Building on the idea of (31), we adopt the penalty
term

∑L
k=1 hk(p) where hk(p) is defined in (30), and p

is further determined by

hLmax(p) =
2

n
. (32)

Theorem 4 implies that hk(p) ≈ F−1
χ2

1
(p)/k for large

k, where F−1
χ2

1
(·) denotes the inverse function of the

cumulative distribution function of χ2
1. From (32) we

have F−1
χ2

1
(p) ≈ 2Lmax/n, and thus hk(p) ≈ 2Lmax/(nk).

We therefore propose the following criterion: select
the L ∈

{
1, . . . , Lmax

}
that minimizes log êL +

(2Lmax/n)
∑L

k=1 1/k.
We have seen that given a fixed type I error, the

threshold for hypothesis test (26) is a constant, while the
threshold for (29) decreases in L leading to the 1/k term.
Intuitively speaking, the uniform distribution on SL(r)
concentrates more around the boundary of the space,
and the loss of underfitting, eL−1/eL = 1/(1 − ψ2

L,L),
becomes more negligible, as L increases. To some extent,
this observation suggests an interesting idea that the
penalization for different models is not necessarily linear
in model dimension; one may start with a BIC-type
heavy penalty, but relax it more and more to an AIC-
type light penalty as the candidate model grows, offering
the possibility of changing/reinforcing one’s belief in the
model specification.

C. Uniform distribution of stable autoregressive filters

We have defined SL(r) in (28), the space of all the
stable autoregressive filters whose roots have modulus
no larger than r (0 < r ≤ 1). Ding et al. [35] proposed
a simple algorithm to generate a filter ΨL uniformly
distributed on SL(r). The algorithm for r = 1 is given
by the following pseudocode.

The formula is similar to the Levinson-Durbin recur-
sion except in the way where ψL,L is obtained. From
Algorithm 1, the generation of a uniformly distributed
filter of order L breaks down to the generation of
L independent but not identically distributed random
variables. This agrees with the fact that a stable filter
can be uniquely identified by ψk,k (k = 1, . . . , L) [36].
Theorem 4 is based upon Algorithm 1.

Proof of Theorem 4:
Proof: The distributions and independence of

ψ1,1, . . . , ψL0,L0
follow from the procedure of Algorithm

1, and the continuously differentiable bijective mapping
from ψ1,1, . . . , ψL0,L0

to ψL0,1, . . . , ψL0,L0
[37]. For any

two positive integers a and b, if Y ∼ B(a, b), it is well
known that the distribution of Y is the same as the

distribution of (Z1+ · · ·+Za)/(Z1+ · · ·+Za+b), where
Z1, . . . , Za+b are independent exponential random vari-
ables with density function fZ(z) = exp(−z) (z ≥ 0).
Suppose that a/(a+ b) tends to a constant 0 < c < 1 as
a and b tend to infinity. From the central limit theorem,

Ya =
b

a+ b

√
a√

a+ b

Z1 + · · ·+ Za − a√
a

,

Yb = − a

a+ b

√
b√

a+ b

Za+1 + · · ·+ Za+b − b√
b

are asymptotically N (0, (1− c)2c) and N (0, c2(1− c)),
respectively. Since Ya and Yb are independent, Ya + Yb
is asymptotically N (0, (1− c)c). Furthermore, from law
of large numbers and Slutsky’s theorem,
√
a+ b

(
Z1 + · · ·+ Za
Z1 + · · ·+ Za+b

− a

a+ b

)
=

√
a+ b

{
b(Z1 + · · ·+ Za)− a(Za+1 + · · ·+ Za+b)

(a+ b)(Z1 + · · ·+ Za+b)

}
= (Ya + Yb)

(
Z1 + · · ·+ Za+b

a+ b

)−1

converges in distribution to N (0, (1−c)c). Since (ψL,L+
1)/2 ∼ B(⌊L/2 + 1⌋, ⌊(L + 1)/2⌋), we conclude that√
L{(ψL,L + 1)/2 − 1/2} converges in distribution to

N (0, 1/4),
√
LψL,L converges in distribution to N (0, 1),

and Lψ2
L,L converges in distribution to χ2

1. Finally, it can
be verified by the delta method and the identity gL =
− log(1−ψ2

L,L) that LgL converges in distribution to χ2
1.

APPENDIX B
TECHNICAL LEMMAS

Lemma 1: [19, Lemma 3.4] Let L be a positive
integer and suppose that Assumption 1 holds. Then

E

(
N

∥∥∥∥ 1

N

n∑
t=L

(n)
max+1

xt−1:t−L ϵt

∥∥∥∥2
Γ−1

L

− Lσ2
)4

= (48L+ 12L2)σ8 +O(N−1)L4 .

Lemma 2: [19, Lemma 3.3] Under Assumptions 1
and 2,

lim
n→∞

(
max

1≤L≤L(n)
max

∥Γ̂−1
L − Γ−1

L ∥
)

= 0,

lim
n→∞

(
max

1≤L≤L(n)
max

∥Γ̂L − ΓL∥
)

= 0 in probability.

We will need the following lemmas for the proof of
Theorem 1.

Lemma 3: Suppose that the model class is well-
specified and that the true lag order is L0. Under
Assumptions 1 and 2, for any constant η > 0, there
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Algorithm 1 Generate a uniform sample in SL(1)
Randomly draw ψ1,1 from the uniform distribution on [−1, 1]
For k = 2 to k = L

Randomly draw βk according to the beta distribution βk ∼ B(⌊k/2 + 1⌋, ⌊(k + 1)/2⌋)
Let ψk,k = 2βk − 1, ψk,ℓ = ψk−1,ℓ + ψk,kψk−1,k−ℓ (ℓ = 1, . . . , k − 1)

Output ψL,1, . . . , ψL,L

exists a constant cη > 0 (only depending on η), such
that

pr

(∣∣∣∣ NLσ2 ∥Ψ̂L −ΨL0
∥2Γ − 1

∣∣∣∣ > η

)
< cηL

−2

for all integer L satisfying L0 ≤ L ≤ L
(n)
max.

Proof: It follows from Lemma 1 and Markov’s
inequality that

pr

(∣∣∣∣ NLσ2
∥∥∥∥ 1

N

n∑
t=L

(n)
max+1

xt−1:t−L ϵt

∥∥∥∥2
Γ−1

L

− 1

∣∣∣∣ > η

)
< 48η−4L−3 + 12η−4L−2 +O(N−1)

≤ c′ηL
−2 (33)

for some constant c′η > 0, where (33) is due to L̂ ≤ L
(n)
max

and L(n)
max = o(n1/2). Since

Ψ̂L = −(Y TY )−1Y TXn:L
(n)
max+1

= −(Y TY )−1Y T(−YΨL + ϵn:L(n)
max+1)

= ΨL − (Y TY )−1Y Tϵn:L(n)
max+1

= ΨL − Γ̂−1
L

1

N

n∑
t=L

(n)
max+1

xt−1:t−L ϵt ,

where

Y =

xn−1 · · · xn−L
...

. . .
...

xL(n)
max

· · · xL(n)
max−L+1

 ,

we have

∥Ψ̂L −ΨL∥2Γ̂L
=

∥∥∥∥ 1

N

n∑
t=L

(n)
max+1

xt−1:t−L ϵt

∥∥∥∥2
Γ̂−1

L

. (34)

Applying inequality (9), Lemma 2, inequality (33) and
equality (34), we have the desired result.

Lemma 4: For any positive integer L such that L ≥
L0, we have êL0

−êL = ∥Ψ̂L−ΨL0
∥2
Γ̂L

−∥Ψ̂L0
−ΨL0

∥2
Γ̂L
.

Proof: It follows from Equations (3) and (4) that

êL0
− êL = ∥γ̂L∥2Γ̂−1

L

− ∥γ̂L0
∥2
Γ̂−1

L0

= ∥Ψ̂L∥2Γ̂L
− ∥Ψ̂L0

∥2
Γ̂L0

= ∥Ψ̂L −ΨL0
∥2
Γ̂L

− ∥Ψ̂L0
−ΨL0

∥2
Γ̂L

+ 2ΨT

L0
Γ̂L(Ψ̂L − Ψ̂L0

)

= ∥Ψ̂L −ΨL0
∥2
Γ̂L

− ∥Ψ̂L0
−ΨL0

∥2
Γ̂L

.

We also need the following lemma for the proof of
Proposition 1.

Lemma 5: [19, Theorem 4.2] Suppose that Assump-
tions 1, 2, 4 hold. Suppose that an order selection
criterion is to select the L̂ that minimizes the statistics
{N + 2L + δn(L)}êL, where δn(L) is a real-valued
random or non-random function of L, 1 ≤ L ≤ L

(n)
max. If

lim
n→∞

max
1≤L≤L(n)

max

|δn(L)|
N

= 0 in probability, (35)

lim
n→∞

max
1≤L≤L(n)

max

|δn(L)− δn(L
∗
n)|

NCn(L)
= 0 in probability,

(36)

then the selection L̂ is asymptotically efficient.

APPENDIX C
PROOF OF THEOREM 1

Proof: We first prove that the probability of under-
fitting is zero when n tends to infinity. The probability
of choosing L̂ = L (L < L0) is bounded by

pr(L̂ = L) ≤ pr

{
log êL − log êm <

2L
(n)
max

n

m∑
k=L+1

1

k

(m = L+ 1, · · · , L0)

}
≤ pr

(
log êL − log êL0

<
2L

(n)
max

n

L0∑
k=L+1

1

k

)

≤ pr

(
log êL0−1 − log êL0

<
2L

(n)
maxL0

n

)
Choose any ε > 0. Since ψL0,L0

̸= 0, the consistency of
Ψ̂L0

and Assumption 2 imply that there exists a positive
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number λ such that for all sufficiently large n

pr

(
log êL0−1 − log êL0

> λ

)
= pr

(
log

1 + op(1)

1− ψ̂2
L0,L0

> λ

)
> 1− ε,

and
2L

(n)
maxL0

n
< λ.

It follows that limn→∞ P
(
L̂ < L0

)
= 0.

We next prove that the probability of overfitting tends
to zero when n tends to infinity. It suffices to show that
given any ε > 0, pr(L̂ > L0) < ε for all sufficiently
large n. For any positive integer L′ greater than L0, the
probability of choosing L̂ ≥ L′ is bounded by

pr(L̂ ≥ L′) = pr

{ L
(n)
max∪

L=L′

(L̂ = L)

}

≤ pr

[ L(n)
max∪

L=L′

{
log êm − log êL >

2L
(n)
max

n

L∑
k=m+1

1

k

(m = L0, · · · , L− 1)

}]

≤ pr

{ L
(n)
max∪

L=L′

(
log êL0

− log êL >
2L

(n)
max

n

L∑
k=L0+1

1

k

)}
.

(37)

Because of 1/k ≥ 1/L
(n)
max, we obtain

pr(L̂ ≥ L′) ≤ pr

{ L
(n)
max∪

L=L′

(
log

êL0

êL
>

L∑
k=L0+1

2

n

)}

≤
L

(n)
max∑

L=L′

pr

{
log

êL0

êL
>

2(L− L0)

n

}

≤
L

(n)
max∑

L=L′

pr

[
êL0

− êL
êL0

> 1− exp

{
−2(L− L0)

n

}
=

2(L− L0)

N
{1 + o(1)}

]

≤
L

(n)
max∑

L=L′

pr

{
N

L− L0

êL0
− êL
êL0

− 1 > 1 + o(1)

}
. (38)

It follows from Lemmas 2, 3, and 4, and the consistency
of Ψ̂L0

and êL0
, that there exists a positive integer L1

(L1 > L0) such that with probability at least 1 − ε/3,
for all L (L1 < L < L

(n)
max), the event

{
N/(L − L0) ·

(êL0
− êL)/êL0

−1 > 1+o(1)
}

is contained in the event

{
N/(Lσ2) · ∥Ψ̂L −ΨL0

∥2Γ − 1 > 2−1/4
}

, implying that

pr

{
N

L− L0

êL0
− êL
êL0

− 1 > 1 + o(1)

}
≤ pr

(∣∣∣∣ NLσ2 ∥Ψ̂L −ΨL0
∥2Γ − 1

∣∣∣∣ > 2−1/4

)
< cL−2

for some positive constant c. Combining this result and
Inequality (38), we obtain

pr(L̂ ≥ L1) ≤
ε

3
+

L
(n)
max∑

L=L1

cL−2 ≤ ε

3
+ c(L1 − 1)−1.

Furthermore, there exists a positive integer L2 (L2 ≥ L1)
such that

pr(L̂ ≥ L2) ≤
ε

3
+
ε

3
=

2ε

3
. (39)

It remains to prove that pr(L̂ < L2) ≤ ε/3 for all
sufficiently large n. Similar to (37), we have

pr(L0 < L̂ < L2)

≤ pr

{ L2−1∪
L=L0+1

(
log êL0

− log êL >
2L

(n)
max

n

L∑
k=L0+1

1

k

)}

≤ pr

{
log êL0

− log êL2−1 >
2L

(n)
max

n

1

L0 + 1

}
. (40)

It has been proved in [18] that the random variables
n(êL−1 − êL) (L = L0 + 1, . . . , L2 − 1) are asymp-
totically independent and distributed according to χ2

1

(for the L2 that does not depend on n). Therefore,
log êL0

− log êL2−1 = Op(n
−1), and the value in (40)

is less than ε/3 for all sufficiently larger n. In sum, we
obtain pr(L̂ > L0) ≤ ε for all sufficiently larger n, and
thus limn→∞ pr(L̂ > L0) = 0.

Finally, we prove that L̂ converges almost surely to
L0, when L̂ is restricted to a finite candidate set that
does not depend on n and that contains L0. Without
loss of generality, we suppose that the candidate set is
{1, . . . , Lmax}, where Lmax > L0 is a constant integer.
Let c > 0 be any fixed constant. Condition (10) implies
that there exists a positive integer n1 such that for all
n > n1, cLmax < L

(n)
max/(log log n). This means that for

each L (L0 < L < Lmax) the penalty increment of BC
is larger than that of HQ criterion, i.e.,

2L
(n)
max

n

1

L
>

2c log log n

n
.

Therefore, the event E1 = {L̂ = L (L0 < L < L2)} im-
plies the event E2 = {log êL−1−log êL > 2L

(n)
max/(nL)},

which further implies E3 = {log êL−1 − log êL >
(2c log log n)/n}. On the other hand, it can be proved
by the law of the iterated logarithm that the event E3
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is eventually null with probability one (see for example
[9]).

APPENDIX D
PROOF OF PROPOSITION 1

Proof:
We prove for the case where cL = c is a constant

series. Similar proof can be applied to the general case.
Case 1) Recall that the bridge criterion is to select L

(1 ≤ L ≤ L
(n)
max) that minimizes

log êL +
2L

(n)
max

n

L∑
k=1

1

k
.

By adding a constant logN that does not depend on L,
it is equivalent to minimizing

logN + log êL +
2L

(n)
max

n

L∑
k=1

1

k
,

which is further equivalent to minimizing (N + 2L +

δn(L))êL (1 ≤ L ≤ L
(n)
max) where

δn(L) = N exp

[
2L

(n)
max

n

L∑
k=1

1

k

]
− (N + 2L). (41)

Due to Lemma 5, it suffices to prove that δn(L)
satisfies the conditions (35) and (36). Using Tay-
lor series expansion, equality (41), and the fact that
limn→∞(L

(n)
max logL

(n)
max)2/n = 0 holds for both (14) and

(16), we obtain

δn(L) = N

[
1 +

2L
(n)
max

n

L∑
k=1

1

k
+ o(n−1)

]
− (N + 2L)

= 2L
(n)
max

N

n

L∑
k=1

1

k
− 2L+ o(1) = o(N), (42)

which guarantees (35).
The denominator in (36) is

G(L) = NCn(L) = Lσ2 +N∥ΨL −Ψ∞∥2Γ
= Lσ2 +NcL−γ .

The derivative of the function G(y) satisfies dG(y)/dy <
0 when 1 ≤ y ≤ Θ(n1/(1+γ)−ε) for sufficiently large n.
Therefore, (14) implies that G(L) ≥ G(L

(n)
max) and

|δn(L)− δn(L
∗
n)|

NCn(L)
≤ (2L

(n)
max logL

(n)
max){1 + o(1)}

L
(n)
maxσ2 +Nc(L

(n)
max)−γ

= Θ

{
(2L

(n)
max logL

(n)
max)(L

(n)
max)γ

Nc

}
.

Furthermore, the desired result (36) follows from

lim
n→∞

(2L
(n)
max logL

(n)
max)(L

(n)
max)γ

Nc
= 0.

Case 2) Using a similar reasoning we obtain

|δn(L)− δn(L
∗
n)|

NCn(L)
≤ (2L

(n)
max logL

(n)
max){1 + o(1)}

L
(n)
maxσ2 +Nc exp(−γL(n)

max)

= Θ

(
2L

(n)
max logL

(n)
max

nε

)
,

which goes to zero as n tends to infinity.

APPENDIX E
PROOF OF REMARK 4

Proof: With a slight abuse of notation, we write
L0(n) as L0 for brevity. For L < L0 we have

log∥ΨL −ΨL0
∥2ΓL0

= log eL =

L0∑
k=L+1

gk

= −
L0∑

k=L+1

log(1− ψ2
k,k) . (43)

From Theorem 4,

(ψk,k + 1)/2 ∼ B(⌊k/2 + 1⌋, ⌊(k + 1)/2⌋).

Let bk = (ψk,k+1)/2. Straightforward calculation using
the central moments of the beta distribution [38, Chapter
4] gives

E(ψ2
k,k) = E

(
2bk − 1

)2
= 4E

(
bk −

1

2

)2

=
1

k
+Θk

(
1

k2

)
, (44)

and

E

{
ψ4
k,k

2(1− ψ2
k,k)

2

}
=

B(⌊k/2− 1⌋, ⌊(k − 3)/2⌋)
25B(⌊k/2 + 1⌋, ⌊(k + 1)/2⌋)

× E
(
2bk−2 − 1

)4
= Θk

(
1

k2

)
, (45)

where k > 4 and bk−2 ∼ B(⌊k/2−1⌋, ⌊(k−3)/2⌋). For
any 0 ≤ x < 1, Taylor’s theorem gives

x < − log(1− x) = x+
1

2(1− x̂)2
x2

< x+
x2

2(1− x)2
, (46)

where 0 < x̂ < x. Combining (44), (45), and (46), we
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have

E{− log(1− ψ2
k,k)} =

1

k
+Θk

(
1

k2

)
. (47)

Taking (47) into (43), we further obtain

E
(
log∥ΨL −ΨL0

∥2ΓL0

)
=

L0∑
k=L+1

{
1

k
+Θk

(
1

k2

)}

=

L0∑
k=1

1

k
−

L∑
k=1

1

k
+ o(1)

= logL0 − logL+ o(1).

APPENDIX F
PROOF OF THEOREM 2

Proof of consistency:
By a similar argument as in the proof of Theorem 1,

L̂ ≥ L0 with probability approaching one as n tends
to infinity. Next, we prove that there is no overfitting.
Suppose that ε > 0 is any fixed constant. It can be
seen from the proof towards (38) and (39) that L̂AIC is
stochastically bounded. There exists a constant L3 such
that for all sufficiently large n, pr(L̂AIC > L3) < ε/6.
Similar to (38), we obtain for any fixed L′ (to be chosen)

pr(L̂ ≥ L′) ≤ pr(L̂ ≥ L′, L̂AIC ≤ L3) + pr(L̂AIC > L3)

≤
L3∑

L=L′

pr

{
N

L− L0

êL0
− êL
êL0

− 1 >
Mn

L3
+ o(1)

}
+ ε/6. (48)

Following from limN→∞Mn = ∞ and similar argu-
ments as in the proof of Theorem 1, there exists a
constant L1 (L1 > L0) such that with probability at least
1− ε/6, it holds for all L satisfying L > L1 that

pr

{
N

L− L0

êL0
− êL
êL0

− 1 >
Mn

L3
+ o(1)

}
≤ pr

(∣∣∣∣ NLσ2 ∥Ψ̂L −ΨL0
∥2Γ − 1

∣∣∣∣ > 1

)
< cL−2

for some positive constant c. The remaining proof of
consistency follows similar proof of Theorem 1.

Proof of efficiency:
Similar to the proof of Proposition 1, minimizing

BC(n,L) is equivalent to minimizing Sn(L) = (N +
2L+ δn(L))êL, where

δn(L) = 2Mn
N

n

L∑
k=1

1

k
− 2L+ o(1) (49)

We first prove

lim
n→∞

max
1≤L≤L̂AIC

|δn(L)|
N

= 0 in probability. (50)

This immediately follows from L̂AIC ≤ L
(n)
max = o(n) and

Mn < L
(n)
0 = O(n1−ε) for some ε > 0.

We define Sn(L) = (N+2L)êL. Using Equation (4.1),
Proposition 3.2, Lemma 4.1, Proposition 4.1 of [19], we
obtain

Sn(L)− Sn(L̂AIC) =NCn(L)−NCn(L̂AIC)

+ τL + τL̂AIC
(51)

where τL is used to denote a generic quantity that is
negligible compared with NCn(L) uniformly in 1 ≤
L ≤ L

(n)
max, namely

lim
n→∞

max
1≤L≤L(n)

max

τL
NCn(L)

= 0 in probability.

From the proof of Theorem 4.1 in [19],

Sn(L) = Sn(L) + δn(L)σ
2(1− 2L/N) + τL. (52)

We further obtain from (51) and (52) that

Sn(L)− Sn(L̂AIC)

= NCn(L)−NCn(L̂AIC) + δn(L)σ
2 − δn(L̂AIC)σ

2+

τL + τL̂AIC
− 2L

N
σ2δn(L) +

2L̂AIC

N
σ2δn(L̂AIC)

(53)

= NCn(L)−NCn(L̂AIC) + δn(L)σ
2 − δn(L̂AIC)σ

2

+ τL + τL̂AIC
, (54)

where (54) is because the last four terms of (53) can be
written as τL + τL̂AIC

due to (50) and NCn(L) > Lσ2.

Recall that BC selects L̂ that minimizes Sn(L) over
L = 1, . . . , L̂AIC. Thus, Sn(L̂) − Sn(L̂AIC) ≤ 0 almost
surely. Suppose that we have further proved

lim
n→∞

pr

(
δn(L) ≥ δn(L̂AIC),

L = 1, . . . , L̂AIC

)
= 1 (55)

(which we will prove later on), then

lim
n→∞

pr

(
NCn(L̂)−NCn(L̂AIC)

+ τL̂ + τL̂AIC
≤ 0

)
= 1. (56)

Dividing both sides of the inequality in (56) by NCn(L̂),
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we obtain that for any fixed ε > 0,

lim
n→∞

pr

(
Cn(L̂)

Cn(L̂AIC)
< 1 + ε

)
= 1 (57)

Since

lim
n→∞

Cn(L̂AIC)

Cn(L
(n)
0 )

= 1 in probability,

for any fixed ε > 0 we obtain

lim
n→∞

pr

(
Cn(L̂)

Cn(L
(n)
0 )

< 1 + ε

)
= 1. (58)

On the other hand, Cn(L̂)/Cn(L
(n)
0 ) ≥ 1 by the defini-

tion of L(n)
0 . Therefore,

lim
n→∞

Cn(L̂)

Cn(L
(n)
0 )

= 1 in probability (59)

which ensures the efficiency of the bridge criterion.

Due to the above arguments, it suffices to prove (55).
It trivially holds for L = L̂AIC, so we only need to prove
for L < L̂AIC. It follows from (49) that

δn(L)− δn(L̂AIC) = g(L) + o(1) (60)

where g(L) (1 ≤ L < L̂AIC) is defined as

g(L) = −2Mn
N

n

L̂AIC∑
k=L+1

1

k
− 2(L− L̂AIC). (61)

for a given L̂AIC. It is easy to verify that g(L) achieves
its minimum over L = 1, . . . , L̂AIC − 1 at either L = 1
or L = L̂AIC − 1. For L = 1, we obtain from (19), (20),
and the inequality

∑L
k=1 k

−1 < logL+1 (∀L ∈ N) that

g(1) = −2Mn
N

n

L̂AIC∑
k=2

1

k
− 2(1− L̂AIC)

> −2Mn log L̂AIC + 2(L̂AIC − 1)

> 2q1Mn log L̂AIC. (62)

for some fixed positive constant q1, with probability
approaching one as n tends to infinity. For L = L̂AIC−1,
we get

g(L̂AIC − 1) = −2
Mn

L̂AIC

N

n
+ 2

> − 2

log L̂AIC

+ 2 > 1 (63)

with probability approaching one as n tends to infinity.
Finally, from (62) and (63) it is easy to verify that (60)
is no less than zero, with probability approaching one as
n tends to infinity.

Remark 10: Lemma 5 seems not directly applicable
to proving the efficiency of the adjusted bridge criterion.
In the above proof of efficiency, we have weakened the
second condition (i.e., equality (36)) of Lemma 5.

APPENDIX G
PROOF OF PROPOSITION 2

In the well-specified scenario, conditioning on L̂AIC ̸=
L0, it follows from L̂BC, L̂BIC → L0 in probability
(due to the consistency of BC and BIC) that PIn → 1
in probability, as n tends to infinity; conditioning on
L̂AIC = L0, it follows from the definition and L̂BIC = L0

with probability tending to one that limn→∞ PIn = 1 in
probability.

In the mis-specified scenario, dividing both the nomi-
nator and denominator by L̂AIC in (22) for L̂AIC ̸= L̂BIC,
PIn becomes

|L̂BC/L̂AIC − 1|
|L̂BC/L̂AIC − 1|+ |(L̂BC/L̂AIC − 1)− (L̂BIC/L̂AIC − 1)|

.

To prove limn→∞ PIn = 0, it suffices to prove that

lim
n→∞

pr{L̂BIC = L̂AIC} = 0, (64)

and

lim
n→∞

|L̂BC/L̂AIC − 1|
|L̂BIC/L̂AIC − 1|

= 0 in probability. (65)

Similar to the proof of Proposition 1, minimizing
BIC(n,L) is equivalent to minimizing Sn(L) = (N +
2L + δn(L))êL, where δn(L) = (log n − 2)L + o(1).
Similar to the proof of (54), we obtain

Sn(L)− Sn(L
′) = NCn(L)−NCn(L

′) + δn(L)σ
2

− δn(L
′)σ2 + τL + τL′ (66)

where τL is used to denote a generic quantity that is
negligible compared with NCn(L) uniformly in 1 ≤
L ≤ L

(n)
max, and L,L′ are any given integers in between

1 and L̂AIC. By fixing L′ to any given number, say
L′ = 1, we can see that L̂BIC minimizes NCn(L) +
δn(L)σ

2 + τL = NCn(L){1 + op(1)}, or equivalently
Cn(L){1 + op(1)}, where

Cn(L) = Cn(L) +
log n− 2

N
Lσ2. (67)

Suppose that Cn(L) achieves its minimum at L(n)
∗ .

Clearly, limn→∞CN (L
(n)
∗ )/CN (L̂BIC) = 1 in probabil-

ity. From Cn(L) = Lσ2/N + ∥ΨL−Ψ∞∥2Γ, Cn(L) can
be rewritten as Cn(L) = Lσ2/{N/(log n−1)}+∥ΨL−
Ψ∞∥2Γ. Since Assumption 5 guarantees that Cn(L) is
regular, so is Cn(L) (by recognizing N/(log n − 1) as
N ). Therefore, limn→∞ L

(n)
∗ /L̂BIC = 1 in probability.
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From the assumption limn→∞ L
(n)
∗ /L

(n)
0 = 0, we further

obtain

lim
n→∞

L̂BIC

L̂AIC

= lim
n→∞

L̂BIC

L
(n)
∗

L
(n)
∗

L
(n)
0

L
(n)
0

L̂AIC

= 1× 0× 1 = 0 in probability. (68)

It follows from (68) and limn→∞ L̂BC/L̂AIC = 1 (proved
in Theorem 2) that the desired equalities (64) and (65)
hold.

In the example of algebraic decay, namely ∥ΨL −
Ψ∞∥2Γ = cL−γ , we have

Cn(L) =
L

N
σ2 + cL−γ ,

Cn(L) =
L(log n− 1)

N
σ2 + cL−γ ,

with minimum achieved at L(n)
0 = (cγN/σ2)1/(γ+1)

and L(n)
∗ = {cγN/(σ2 logn− σ2)}1/(γ+1), respectively.

Clearly, the assumption limn→∞ L
(n)
∗ /L

(n)
0 = 0 is satis-

fied.

APPENDIX H
PROOF OF THEOREM 3

For brevity, we highlight the major changes in the
proof of Theorem 2. The technical lemmas that need to
be adapted from Assumptions 1, 2 to Assumptions 1′, 2′

are: Lemmas 2 and 3 in our appendix (used in the
proof of consistency), and Proposition 3.2, Lemma 4.1,
Proposition 4.1 in [19] (used in the proof of asymptotic
efficiency). We briefly prove them under the surrogate
assumptions. The proof borrows some technical results
from [20].

For Lemma 2, the second identity follows from the
same proof as [19, Lemma 3.3]. To prove the first
identity, we use [20, Proposition 1]. It states that for
any q > 0 there exists a constant c > 0, such that
E∥Γ̂−1

L − Γ−1
L ∥q ≤ c(N−1L2)q/2 for all 1 ≤ L ≤ L

(n)
max

and all sufficiently large n. Therefore, for any ε > 0 we
have

pr

(
max

1≤L≤L(n)
max

∥Γ̂L − ΓL∥ > ε

)
≤

∑
1≤L≤L(n)

max

pr
(
∥Γ̂L − ΓL∥ > ε

)
≤ ε−q

∑
1≤L≤L(n)

max

E
(
∥Γ̂L − ΓL∥q

)
≤ ε−qcN−q/2(L

(n)
max)

1+q → 0

as n→ ∞, as long as we choose q > 2/δ (with δ being
defined in Assumption 2′).

For Lemma 3, we only need to replace Lemma 1 with
[20, Lemma 3] (under the surrogate assumptions), and
the remaining proof is the same.

Proposition 3.2 in [19] can be replaced by [20,
Lemma 5].

Lemma 4.1 in [19] can be proved by combining our
adapted versions of [19, Proposition 3.2] and Lemma 2,
following similar proof as was in [19].

Proposition 4.1 in [19] can be replaced with [20,
Remark 6] under the surrogate assumptions.

APPENDIX I
BOUNDS ON THE OVERFITTING PROBABILITY

UNDER FINITE SAMPLE SIZES

To derive analytical bounds for the overfitting proba-
bility of using the bridge criterion in (18), we assume that
the filter has finite size L0. Let Z1, . . . , Zm denote inde-
pendent χ2

1 random variables. For any c > E(Z1) = 1
and positive integer m, Chernoff’s bound [39] gives

pr

(
m∑
i=1

Zi > cm

)
<

[
min
u>0

exp
{
−uc+ logE(euZ1)

}]m
= [c exp{−(c− 1)}]

m

2 .

The probability of choosing L (L > L0) is upper
bounded by

pr{L̂ = L} ≤ pr

{ L∑
k=L0+1

ĝk >
2Mn

n

L∑
k=L0+1

1

k

}

≤ pr

{ L∑
k=L0+1

nĝk >
2Mn

L
(L− L0)

}
,

which can be further approximately upper bounded by

pr

{L−L0∑
k=1

Zk >
2Mn

L
(L− L0)

}

<

{
2Mn

L
exp

(
−2Mn

L
+ 1

)}L−L0
2

since nĝL0+1, . . . , nĝL are asymptotically independent
and distributed χ2

1. Furthermore, we can derive the
following tighter bound, the technical detail of which
is summarized in Proposition 3 below. For a positive
integer k, define A(k) = {[a1, . . . , ak]T : a1+· · ·+kak =
k, a1, . . . , ak are nonnegative integers}. For L > L0,
we have the approximation

pr(L̂ = L} ≤
∑

A(L−L0)

L−L0∏
j=1

1

aj !

(
ηj
j

)aj
,

ηj = 1− Fχ2
L−L0

{
2Mn

L
(L− L0)

}
, (69)
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where Fχ2
L−L0

(·) denotes the cumulative distribution
function of χ2

L−L0
.

Proposition 3: Suppose that the true autoregressive
filter has finite size L0, and that the selected order is
L (L0 < L ≤ Mn). Given any 0 < ε < 1, there exists
a positive integer n1 such that for all n > n1,

pr(L̂ = L) ≤
∑

A(L−L0)

L−L0∏
j=1

1

aj !

(
ηj
j

)aj

+ ε, (70)

ηj = 1− Fχ2
j

{
2Mn

L
j

}
where Fχ2

j
(·) denotes the cumulative distribution func-

tion of χ2
j . In a special case where Mn does not depend

on n, we have

lim sup
n→∞

pr(L̂ = L) ≤
∑

A(L−L0)

L−L0∏
j=1

1

aj !

(
ηj
j

)aj

.

To prove Proposition 3, we will need the following
lemma which was also used in deriving the overfitting
probability of AIC [18].

Lemma 6: [40, Equality 3.4] Let Z1, . . . , Zk denote
independent and identically distributed random variables
and Ti = Z1 + · · ·+ Zi (1 ≤ i ≤ k). Define

A(k) = {[a1, a2, . . . , ak]T : a1 + 2a2 + · · ·+ kak = k,

a1, . . . , ak are nonnegative integers}.

The identity

pr

{ k∩
j=1

(Tj > 0)

}
=
∑
A(k)

k∏
j=1

1

aj !

(
ηj
j

)aj

,

holds, where ηj = pr(Tj > 0).
Proof of Proposition 3:
Let Z1, . . . , ZL−L0

denote independent χ2
1 random

variables. The probability of choosing L (L > L0) is
upper bounded by

pr{L̂ = L}

≤ pr

{ L∑
k=m+1

ĝk >
2Mn

n

L∑
k=m+1

1

k
(L0 ≤ m ≤ L− 1)

}

≤ pr

{ L∑
k=m+1

nĝk >
2Mn

L
(L−m) (L0 ≤ m ≤ L− 1)

}

= pr

{ L∑
k=m+1

ZL+1−k >
2Mn

L
(L−m)−

L∑
k=m+1

Λ
(n)
L+1−k

(L0 ≤ m ≤ L− 1)

}
,

where Λ
(n)
1 , . . . ,Λ

(n)
L−L0

are random variables that con-

verge in distribution to zero as n tends to infinity.
Define Λ(n) = max

{
|Λ(n)

1 |, . . . , |Λ(n)
L−L0

|
}

, which also
converges in distribution to zero. Given any 0 < δ < 1
(which will be determined later), there exists a positive
integer n1 such that for all n > n1, pr(Λ(n) > δ) < ε/2.
For any given n > n1, we define Tj =

∑j
k=1(Zk −

2Mn/L+ δ) for j = 1, . . . , L−L0. From Lemma 6, we
obtain

pr{L̂ = L}

≤ pr

{ L∑
k=m+1

ZL+1−k >
2Mn

L
(L−m)− δ (L−m)

(L0 ≤ m ≤ L− 1)

}
+
ε

2

= pr

{L−L0∩
j=1

(Tj > 0)

}
+
ε

2

≤
∑

A(L−L0)

L−L0∏
j=1

1

aj ! jaj
{P (Tj > 0)}aj +

ε

2

=
∑

A(L−L0)

L−L0∏
j=1

1

aj ! jaj

[
1− Fχ2

j

{
(c−∆c)j

}]aj
+
ε

2

(71)

where c = 2Mn/L ≥ 2,∆c = δ < 1. Let fj(x) =
{2j/2Γ(j/2)}−1xj/2−1 exp(−x/2) denote the probabil-
ity density function of χ2

j , or the derivative of Fχ2
j
(x),

where Γ(·) denotes the Gamma function. It is easy
to verify that fj(x) is strictly decreasing for x > j.
By the mean value theorem, there exists a ĉ such that
1 < c−∆c < ĉ < c, and

1− Fχ2
j

{
(c−∆c)j

}
= 1− Fχ2

j
(cj) + fj(ĉj)∆c

< 1− Fχ2
j
(cj) + fj(j)∆c .

Applying the above inequality to (71), we obtain

pr{L̂ = L} ≤
∑

A(L−L0)

L−L0∏
j=1

1

aj ! jaj

[
1− Fχ2

j

{
cj
}]aj

+ δcL +
ε

2

where cL > 1/2 is some constant that depends only on
L. Finally, we obtain (70) by letting δ = ε/(2cL).

Remark 11: In an experiment, we choose the true fil-
ter Ψ3 = [0.8, 0.64, 0.512]T and independently generate
1000 time series of size 1000 for the cases Mn = 6
and Mn = 7. The frequencies of L̂ = 4, . . . ,Mn for the
generated time series along with the upper bounds are
summarized in Table IV.
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Mn = 7 Mn = 6

L 4 5 6 7 4 5 6
Frequency (in percentages) 6.4 1.6 1.1 0.6 7.2 2.9 2.7

Upper bounds (in percentages) 24.8 6.1 1.9 0.7 28.86 9.1 3.7

TABLE IV: The frequency of the selected orders and the approximate upper bounds from (69)
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