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Abstract—In this work, we propose a new inference
procedure for understanding non-stationary processes,
under the framework of evolutionary spectra developed
by Priestley. Among various frameworks of modeling
non-stationary processes, the distinguishing feature of the
evolutionary spectra is its focus on the physical mean-
ing of frequency. The classical estimate of the evolu-
tionary spectral density is based on a double-window
technique consisting of a short-time Fourier transform
and a smoothing. However, smoothing is known to suffer
from the so-called bias leakage problem. By incorporating
Thomson’s multitaper method that was originally designed
for stationary processes, we propose an improved esti-
mate of the evolutionary spectral density, and analyze its
bias/variance/resolution tradeoff. As an application of the
new estimate, we further propose a non-parametric rank-
based stationarity test, and provide various experimental
studies.

Index Terms—Non-stationary Processes, Evolutionary
Spectra, Spectral Analysis, Multitaper Method, Station-
arity Test.

I. INTRODUCTION

NOnstationary processes are common across a vari-
ety of areas and serve as a natural generalization of

the classical wide-sense stationary processes. Because of
their wide range of applications, they have been an active
research area in many different areas including signal
processing, statistics, neuroscience, and economics.

However, the intrinsic complexity of the non-
stationarity precludes a unique way of modeling the
non-stationary processes. Various frameworks have been
developed over the past few decades: instantaneous
power spectra [1], evolutionary spectra [2], Wigner-Ville
spectral analysis [3], locally stationary processes [4], and
local cosine basis [5] among others. In this work, we
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adopt the evolutionary spectra framework developed by
Priestley and his colleagues [2], [6]–[8], which is one of
the first attempts to model non-stationary processes from
the spectral point of view. The appealing aspect of this
framework is its emphasis on the physical meaning of
frequency, while generalizing the spectral representation
of the stationary processes to that of the non-stationary
processes [9].

Perhaps the most closely related framework is the
locally stationary processes framework. Since Dahlhaus
developed this framework in a series of papers [4],
[10], [11], it has been extensively studied (see for
example [12], [13] and references therein). We attempt
to summarize the main differences between the two
frameworks as follows. The evolutionary spectra frame-
work is motivated by the physical interpretation of
frequency, but does not guarantee the uniqueness of the
spectral density. On the other hand, the locally stationary
processes framework guarantees the uniqueness of the
spectral density by providing an asymptotic analysis
of the non-stationary processes. However, the rescaling
technique, which is central to that framework, may sac-
rifice physical interpretations in some real applications.
More comparisons between these two frameworks can
also be found in [14] and detailed discussions on the
other frameworks can be found in [9], [15] and the
references therein.

The estimation procedure of the evolutionary spectra
in [2] is based on the so-called double-window tech-
nique, consisting of a short-time Fourier transform and
smoothing. However, the smoothing step is known to
suffer from the so-called bias leakage problem [16]. To
overcome this problem for stationary processes, various
tapering methods have been developed and Thomson’s
multitaper method [17] is arguably the most widely used
one. In this work, we apply the multitaper method to
the estimation of evolutionary spectral density and ana-
lyze the bias/variance/resolution tradeoff of the estimate.
We show that the non-stationarity calls for additional
considerations of the tradeoff, which provides insights
into window design, choice of frequency resolution and
number of tapers. As an application of the estimate,
we propose a non-parametric rank-based stationarity test
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and compare it with the stationarity test investigated by
Priestley and Subba Rao in [7]. Our test is more robust
to the underlying distribution of the data, and it can serve
as a complementary test to the existing stationarity tests
from our numerical experiments.

The paper is organized as follows. In Section II, the
evolutionary spectra framework is briefly reviewed. In
Section III, the main results are summarized and the
key steps of the proofs are presented. In Section IV,
the estimate based on the short-time Fourier transform is
evaluated through a new time-domain approach, which
facilitates the analysis of the estimate in later sections
and serves as a much simplified proof compared with
the original one. In Section V, the estimate based on the
multitaper method is analyze in the evolutionary spectra
framework. In Section VI, a non-parametric stationarity
test is proposed and various experimental studies are
presented.

A. Notation

Let Z and R denote the set of integers and real
numbers, respectively. For integers a and b such that
a < b, let [a : b] , {a, a + 1, . . . , b}. Let {X(t)} ∆

=
{X(t), t ∈ Z} denotes a sequence of random variables.
{X(t)} is called wide-sense stationary if its mean is
a constant E[X(t)] = mX and its auto-covariance
depends only on the distance between the time indices
Cov(X(t), X(s)) = c(t − s). Throughout this paper,
stationary processes are referred to as wide-sense sta-
tionary processes. For two non-negative functions f(x)
and g(x), we write f(x) = O(g(x)) if there exists
some constant 0 < C < ∞ such that f(x) ≤ Cg(x)
for sufficiently large x. Let N (µ, σ2) denote a normal
distribution with mean µ and variance σ2. Let log(·)
denote the logarithm function with base 2. For p ≥ 1, let
‖·‖p denote the lp norm. We closely follow the notation
in [18].

II. EVOLUTIONARY SPECTRA FRAMEWORK

A. Brief Review of the framework

In [2], the main focus is the continuous time setting,
and the discrete time setting follows immediately. In this
work, we will focus on the discrete time setting. In the
following, we first briefly review the evolutionary spectra
framework. Consider a class of non-stationary processes
{X(t)}, with E[X(t)] = 0 and E[X2(t)] <∞ for t ∈ Z,
such that

X(t) =

∫ π

−π
φt(w)dZ(w), t ∈ Z, (1)

for some family F of functions {φt(w)} (defined on
[−π, π] indexed by t) and a measure µ(w), where Z(w)

is an orthogonal increment process with E |dZ(w)|2 =
dµ(w). If there exists a family of functions {φt(w) =
eiwtAt(w)} such that {X(t)} can be represented as in (1)
and any for fixed w, the Fourier transform Hw(v) of
hw(t) , At(w) (viewed as a function of t) has an
absolute maximum at the origin, then {X(t)} is called an
osciliatory process with respect to osciliatory functions
{eiwtAt(w)}, and the evolutionary spectrum at time t
with respect to F is

dFt(w) = |At(w)|2dµ(w).

Remark 1: Note that hw(t) ≡ 1 corresponds to the
case when {X(t)} is a stationary process, which leads
to Hw(v) ≡ δ(v), where δ(·) is the Dirac delta function.

Throughout this paper, we assume that µ(w) is ab-
solutely continuous with respect to Lebesgue measure.
Thus the evolutionary spectral density at time t is

ft(w) = |At(w)|2dµ(w)

dw
.

Note that

Hw(v) =

∞∑
t=−∞

hw(t)e−ivt.

Without loss of generality, At(w) can be normalized so
that for all w,

A0(w) = 1, (2)

which implies that dµ(w) represents the evolutionary
spectrum at t = 0 and |At(w)|2 represents the change
relative to t = 0. Let

BF (w) =

∫ π

−π
|v||Hw(v)|dv,

and each family F of oscillatory functions is called semi-
stationary if BF (w) is bounded for all w. Then

BF =

(
sup
w
BF (w)

)−1

is call the characteristic width of F . A semi-stationary
process {X(t)} is defined as the one that can be repre-
sented as (1) with respect to a semi-stationary family F .
Let C denote the class of semi-stationary families such
that {X(t)} can be represented as (1). Then

BX = sup
F∈C

BF (3)

is called the characteristic width of {X(t)}. If there
exists a family F∗ ∈ C with characteristic width equals
to BX , F∗ is called the natural representation of {X(t)}.
If there exists no family in C with characteristic width
equals to BX , let F∗ denote any family with characteris-
tic width arbitrarily close to BX . From now on we will
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only focus on F∗ and the spectral representation with
respect to this family. In particular, At(w), dµ(w), and
dFt(w) are all defined with respect to F∗. In this work,
we consider that {X(t)} admits a natural representation
F∗, which implies that BF∗ = BX .

Remark 2: It is straightforward to see that semi-
stationary processes includes stationary processes as
special cases with F∗ = {eiwt} and BX =∞.

The characteristic width of {X(t)}, BX , can be intu-
itively viewed as the maximal length of the interval over
which the process may be treated as “approximately sta-
tionary” [2]. It plays an important role in this framework,
however, it is hard to characterize (see Section V-B for
a detailed discussion). Priestley [2] proposed a double-
window technique to estimate the evolutionary spectral
density. The first window is for the short-time Fourier
transform and the second window is for smoothing. In
this work, however, the second window will be replaced
by the multitaper method as smoothing is known to
suffer from the bias leakage problem (see Section V for
details). The width of the first window {g(u), u ∈ R} is
defined as

Bg ,
∞∑

u=−∞
|u||g(u)|.

In this work, we focus on time-limited windows, i.e.,
there exists some L > 0 such that g(u) = 0 for |u| > L.
Let G(w) denote the Fourier transform of g(u), i.e.,

G(w) =

∞∑
u=−∞

g(u)e−iuw. (4)

We assume that g(u) is square integrable and without
loss of generality it is normalized,

2π

∞∑
u=−∞

|g(u)|2 =

∫ π

−π
|G(w)|2dw = 1. (5)

B. Uniformly Modulated Processes

It is hard to characterize BX exactly for semi-
stationary processes [19]. However, there is one impor-
tant class of processes whose characteristic widths can be
bounded from below. This class, termed as the uniformly
modulated processes [2], is of the following form:

X(t) = c(t)Y (t), (6)

where Y (t) is a stationary process with zero mean and
spectral density fY (w), and the Fourier transform of c(t)
has an absolute maximum at the origin. Thus it follows
straightforwardly that

X(t) =

∫ π

−π
c(t)eiwtdZ(w),

where E |dZ(w)|2 = dFY (w). The process introduced
in (6) is an oscillatory process since FY = {c(t)eiwt}
is a family of oscillatory functions. The evolutionary
spectrum with respect to F is

ft(w) = c2(t)fY (w).

The name, uniformly modulated processes, follows from
the fact that

ft1(w1)

ft2(w1)
=
ft1(w2)

ft2(w2)
.

From the definition of BX , we have BX ≥ BFY
.

III. STATEMENTS OF THE MAIN RESULTS

For semi-stationary processes {X(t), 0 ≤ t ≤ T −
1}, it is natural to apply the multitaper method [17],
which identifies K sequences of length N denoted by
{gk(u), 1 ≤ k ≤ K, 1 ≤ u ≤ N} (assume N to be odd
for simplicity of notation). Let 2π/N < W < π denote
the frequency resolution of the multitaper method. The
details are postponed to Section V. The estimate of the
evolutionary spectral density ft(w) is given as below

f̂Kt (w) =
1

K

K−1∑
k=0

|U (k)(w)|2, (7)

where we have

U
(k)
t (w) =

T−1∑
u=0

gk(u− t)X(u)e−iwu

with gk(u) being a set of sequences (shifted so that they
are centered around 0) each of length N < T for −(N−
1)/2 ≤ u ≤ (N − 1)/2 and 1 ≤ k ≤ K. Let

Gk(λ) =

(N−1)/2∑
u=−(N−1)/2

gk(u)e−iλu.

The expectation of its evolutionary spectral density
estimate using the multitaper method is given below.

Theorem 1:

E[f̂Kt (w)]

=

∫ π

−π
ρK(w − λ)ft(λ)dλ+O

(
B(K)
g /BX

)
=

∫ π

−π
ρK(λ)ft(w − λ)dλ+O

(
B(K)
g /BX

)
,

where

ρK(λ) ,
1

K

K−1∑
k=0

|Gk(λ)|2, B(K)
g , max

k
Bgk ,

and B(K)
g is sufficiently smaller than BX .
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Assume that ‖ft(w)‖∞ is bounded for all t, the bias
of the estimate can be bounded as follows.

Theorem 2: Assume that ‖ft(w)‖∞ <∞,∣∣Bias(f̂Kt (w))
∣∣ =

∣∣f̂Kt (w)− fKt (w)
∣∣

= O

(
logN

K
+W 2 +

B
(K)
g

BX

)
.

When {X(t)} is further assume to be a normal
process, the variance of f̂Kt (w) can be characterized as
follows.

Theorem 3: Assume that ‖ft(w)‖∞ <∞ and {X(t)}
be a normal process,

Var(f̂Kt (w)) = O

(
1

K
+
B

(K)
g

BX

)
.

From Theorem 2 and 3, the mean squared error (MSE)
of f̂Kt (w) is given by the following.

Corollary 1: Given the same assumptions as in The-
orem 3,

MSE(f̂Kt (w))

= O

((
logN

K

)2

+W 4 +
1

K
+
B

(K)
g

BX

)
.

The proofs of the results are postponed to Section V
and appendices and we briefly overview the main in-
gredients here. Firstly, we analyze |U(w)|2 for general
{g(u)}, which serves as a preliminary estimate (Propos-
tion 1 and Propostion 2) before applying the multitaper
method. We take a different approach than Priestley did
in [2], in particular, we apply the pseudo δ-function
argument (see Definition 1) directly in the time domain
(Lemma 1) instead of in the frequency domain. The
benefits of this new approach are twofolds, it makes
the variance analysis for the multitaper method straight-
forward (Theorem 3) and provides a much simplified
alternative proof of Propostion 2, which is a slightly
different version of Theorem 8.1 in [2]. Secondly, by
leveraging on a recent approximation result (Theorem 4)
on multitaper method by Abreu and Romero [20], we
analyze the bias/vairance/resolution tradeoffs in the evo-
lutionary spectra framework.

IV. APPROXIMATELY UNBIASED ESTIMATE OF THE

EVOLUTIONARY SPECTRA

In this section, we start with analyzing a preliminary
estimate of the ft(w). Recall that g(u) is assumed to be
a time-limited function. First introduce Jt(w) as follows,
for fixed t ∈ Z and w ∈ [−π, π],

Jt(w)

=

∞∑
u=−∞

g(u− t)X(u)e−iwu

=

∞∑
u=−∞

g(u− t)
(∫ π

−π
Au(λ)eiλudZ(λ)

)
e−iwu

(a)
=

∫ π

−π

∞∑
u=−∞

g(u− t)Au(λ)e−i(w−λ)udZ(λ)

=

∫ π

−π
e−i(w−λ)t

∞∑
v=−∞

g(v)Av+t(λ)e−i(w−λ)vdZ(λ),

where the summation and integral can exchange in (a)
is because g(u) is a time-limited function.

Remark 3: Note that Jt(w) is equivalent to its coun-
terpart Yt(w) in [2] when g(u) is a symmetric function,
i.e., g(u) = g(−u) for all u.
In the following, we introduce the pseudo δ-function
argument but apply it to the time domain directly.
The analysis of the spectra estimate of ft(w) in [2]
depends on an approximation called pseudo δ-function
and the discrete counterpart can be defined as below. The
continuous version can be defined similarly and is used
in [2].

Definition 1: Consider two functions a(·) : Z → R
and b(·) : Z → R. Then a(u) is a pseudo δ-function of
order ε with respect to b(u) if, for any t ∈ Z, there exists
ε not depending on t such that∣∣∣∣ ∞∑

u=−∞
a(u)b(u+ t)− b(t)

∞∑
u=−∞

a(u)

∣∣∣∣ < ε.

Now we show the following.

Lemma 1: For family F∗, a(u) , g(u)e−iwu is
a pseudo δ-function of b(u) , Au(w) with order
O
(
Bg/BX

)
.

Proof: To clarify the role of u as the argument, we
write Aw(u) = Au(w) in this proof. For any t ∈ Z,

∞∑
u=−∞

g(u)Aw(u+ t)e−iwu

=

∞∑
u=−∞

g(u)Aw(t)e−iwu +R(t)

with

|R(t)|
(a)
=

1

2π

∣∣∣∣ ∞∑
u=−∞

g(u)e−iwu
∫ π

−π
Hw(v)(eiv(t+u) − eivt)dv

∣∣∣∣
≤ 1

2π

∞∑
u=−∞

|g(u)|
∫ π

−π
|Hw(v)||eivu − 1|dv
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(b)

≤ 1

2π

∞∑
u=−∞

|u||g(u)|
∫ π

−π
|v||Hw(v)|dv

(c)

≤ O
(
Bg/BX

)
,

where in (a), Aw(u) is substituted by

Aw(u) =
1

2π

∫ π

−π
Hw(v)eivudv,

(b) follows since |eix − 1| ≤ |x|, and (c) follows the
definition of Bg and∫ π

−π
|v||Hw(v)|dv = BF∗(w) ≤ 1/BX .

From Lemma 1, Jt(w) can be further expressed in the
following expression.

Proposition 1:

Jt(w)

=

∫ π

−π
e−i(w−λ)tAt(λ)

( ∞∑
v=−∞

g(v)e−i(w−λ)v
)
dZ(λ)

+O
(
Bg/BX

) ∫ π

−π
e−i(w−λ)tdZ(λ)

=

∫ π

−π
At(λ)G(w − λ)e−i(w−λ)tdZ(λ)

+O
(
Bg/BX

) ∫ π

−π
e−i(w−λ)tdZ(λ), (8)

where G(w) =
∑+∞

v=−∞ g(v)e−iwv.

As one shall see, the relationship between the window
choice g(u) and the estimate |Jt(w)|2 of ft(w) is re-
vealed directly through this time domain approach. This
leads to the following proposition.

Proposition 2:

E[|Jt(w)|2]

=

∫ π

−π
|G(w − λ)|2ft(λ)dλ+O

(
Bg/BX

)
(9)

=

∫ π

−π
|G(λ)|2ft(w − λ)dλ+O

(
Bg/BX

)
. (10)

Proof: From (8) we have

E[|Jt(w)|2]

=

∫ π

−π
|G(w − λ)|2ft(λ)dλ

+O
(
Bg/BX

) ∫ π

−π
At(λ)G(w − λ)dµ(λ) (11)

+O
(
Bg/BX

) ∫ π

−π
At(λ)G(w − λ)dµ(λ) (12)

+O

((
Bg/BX

)2)∫ π

−π
dµ(λ). (13)

Recall that ∫ π

−π
|G(w)|2dw = 1.

Now (11) can be bounded as below.∫ π

−π
At(λ)G(w − λ)dµ(λ)

≤
∫ π

−π
|At(λ)||G(w − λ)|dµ(λ)

(a)
=

∫
Ω
|At(λ)||G(w − λ)|dµ(λ)+∫

Ωc

|At(λ)||G(w − λ)|dµ(λ)

≤
∫ π

−π
dµ(λ) +

∫
Ωc

|At(λ)|2|G(w − λ)|2dµ(λ)

(b)
< ∞,

where in (a) define Ω , {w : |At(λ)||G(w − λ)| ≤ 1}
and Ωc , [−π, π]/Ω, (b) follows because of (5) and∫

Ωc

|At(λ)|2|G(w − λ)|2dµ(λ)

≤
∫ π

−π
|G(w − λ)|2ft(λ)dλ ≤

∫ π

−π
ft(λ)dλ.

Since (12) and (13) can be bounded similarly, this ends
the proof for (9). Observe that both |G(w)|2 and ft(w)
for fixed t are periodic functions with period 2π, thus
(10) follows from (9).

Given a sample record {X(0), X(1), ..., X(T −1)} of
length T , for 0 ≤ t ≤ T − 1, let

Ut(w) =

T−1∑
u=0

g(u− t)X(u)e−iwu. (14)

If we have that Bg is sufficiently smaller than BX and
BX sufficiently smaller than T , then for t large enough,
Ut(w) becomes almost identical to Jt(w) and the end
effects are negligible. This holds since we are dealing
with g(u) that is time-limited, i.e., g(u) = 0 for |u| > N
for some N . Thus we have for N/2 < t < T −N/2−1,

E[|Ut(w)|2] =

∫ π

−π
|G(w − λ)|2ft(λ)dλ+O

(
Bg/BX

)
.

To understand the impact of |G(w)|2 on the bias of
the estimate |Ut(w)|2, consider the ideal case where
|G(w)|2 = δ(w). Then since |G(w)|2 is normalized, we
have

E[|Ut(w)|2] = ft(w) +O
(
Bg/BX

)
.
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Thus in this case |Ut(w)|2 becomes an unbiased estimate
of ft(w) up to O

(
Bg/BX

)
. Intuitively speaking, the bias

is controlled by the sidelobe of |G(w)|2: less sidelobe
would lead to a less biased estimate. To quantify the
relationship, definitions similar to Bg and BX in the
frequency domain are needed. Let

B̃g ,
∫ π

−π
w|G(w)|2dw, B̃F (t) ,

∫ π

−π
|λ||Lt(λ)|dλ,

where Lt(λ) ,
∫ π
−π ft(v)e−iλvdv. The minimum

“width” of ft(w) for any t is thus B̃X , supF∈C B̃F
with B̃F ,

(
supt B̃F (t)

)−1.
Roughly speaking, B̃g and B̃X characterize the band-

width of g(u) and ft(w) in the frequency domain,
respectively. Then in order to estimate ft(w), it has
to be changing more slowly than |G(w)|2 for each t.
The following lemma is immediate and the proof can be
found in Appendix A.

Lemma 2: |G(w)|2 is a pseudo δ-function of ft(w) for
each t with order O

(
B̃g/B̃X

)
.

Together with (5), Lemma 2 leads to

E[|Ut(w)|2] = ft(w) +O
(
B̃g/B̃X

)
+O

(
Bg/BX

)
.

Therefore |Ut(w)|2 is an unbiased estimate upto approx-
imations in both time and frequency domain.

For stationary processes, it is well-known that simple
periodogram type of estimate (as in (14) but without
{g(u)}) produces Fejér kernel and is not a satisfactory
estimate [18], [16]. In the asymptotic regime, either
smoothing or tapering is needed to obtain a consistent
estimate; while in the non-asymptotic regime, there is
significant bias leakage because of the sidelobes of the
Fejér kernel [16]. Different tapering techniques have
been developed over the years and the multitaper method
by Thomson [17] is the most widely used technique to
reduce both the bias leakage and variance of the esti-
mate. In the evolutionary spectra framework, however,
additional constraint O

(
Bg/BX

)
is crucial to the per-

formance of the estimate. Therefore the non-stationarity
plays an important role in the bias/vairance/resolution
tradeoff as we shall see in the next section.

V. ESTIMATE BASED ON THE MULTITAPER METHOD

Thomson’s multitaper method [17] has been widely
applied to various fields including wireless communin-
cation [21], neuroscience [22], climate science [23]. In
a recent paper by Abreu and Romero [20], the authors
provide a rigorious proof of an important heuristic
discovered by Thomson. They show that the averaged
taper is close to an ideal band-pass filter over [−W,W ],
i.e., (1/2W )1[−W,W ] in L1 distance. First we briefly

review Thomson’s multitaper method [17] and the dis-
crete prolate spheroidal sequences (DPSS) or Slepian
sequences [24], [25], [16].

A. Thomson’s Multitaper Method

Consider N sample records {X(0), . . . , X(N − 1)}
1. Assume that the sampling frequency is 1, then for
a sequence of length N , the fundamental frequency is
2π/N and the Nyquist frequency is π. For 2π/N <
W < π, one wishes to find sequences with spectral
densities concentrated over [−W,W ]. We will refer to
W as the resolution of the estimate. This problem was
first investigated in a series of papers by Slepian, Laudau,
Pollark [24]–[26]. The solution turns out to be a set of
sequences vk(N,W ;u), 0 ≤ u ≤ N−1, 0 ≤ k ≤ N−1,
which satisfy the following eigenvalue equation

N−1∑
u′=0

sinW (u− u′)
sinπ(u− u′)

vk(N,W ;u′)

= λk(N,W )vk(N,W ;u).

These N eigenvectors vk(N,W ; ·) are called the dis-
crete prolate spheroidal and they are ordered by their
eigenvalues 1 > λ0(N,W ) > λ1(N,W ) > · · · >
λN−1(N,W ) > 0. It is well-known that the first K =
b2NW/2πc = bNW/πc eigenvalues are close to 1.

Remark 4: The choice of using N as the length of
the sample records instead of T is on purpose. T is the
length of the whole sample records, while N will be used
as the length of a time-limited function g(u) discussed
later in this section. If the process is indeed stationary,
one would choose T = N .

The discrete prolate spheroidal wave functions are
denoted by Vk(N,W ;λ) for 1 ≤ k ≤ K, where

Vk(N,W ;λ) = (−1)kεk

N−1∑
u=0

vk(N,W ;u)e−iλ(u−(N−1)/2),

where εk = 1 when k is even and εk =
√
−1 when k is

odd. For simplicity of notation, we suppress N and W
and write vk(u) = vk(N,W ;u), Vk(λ) = Vk(N,W ;λ),
and λk = λk(N,K). These K functions satisfy two
types of orthogonality over [−W,W ] and [−π, π], re-
spectively∫ W

−W
Vk(λ)Vl(λ)dλ =

{
λk, for k = l;

0, otherwise.

∫ π

−π
Vk(λ)Vl(λ)dλ =

{
1, for k = l;

0, otherwise.
(15)

1These N sample records are a consecutive subsequence from the
{X(0), . . . , X(T − 1)}.
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Observe that |Vk(λ)|2 can be rewritten as follows,

|Vk(λ)|2 =

∣∣∣∣N−1∑
u=0

vk(u)e−iλu
∣∣∣∣2. (16)

Consider the average of the K tapered estimates,

ρK(λ) ,
1

K

K−1∑
k=0

|Vk(λ)|2. (17)

It has been observed numerically that ρK(λ) is close to
(1/2W )1[−W,W ](·) by Thomson [17], which is justified
recently by Abreu and Romero [20] as given below.

Theorem 4 ( [20]): Let N ≥ 2 denote the length of
the sequence, 2π/N < W < π and set K = b2NW c.
Then ∥∥∥∥ρK(·)− 1

2W
1[−W,W ](·)

∥∥∥∥
1

= O

(
logN

K

)
.

In the following section, we apply this result to analyze
the performance of the multitaper method for semi-
stationary processes.

B. Estimate of the Evolutionary Spectra based on the
Multitaper Method

For stationary processes, the bias and variance of
the multitaper spectral estimate (17) has been investi-
gated [27], [28], [29]. In this section, we investigate its
performance for semi-stationary processes. Let g(u) be
a time-limited function, i.e.,

|g(u)| = 0, for |u| > (N − 1)/2,

where N is assumed to be odd. Apply the multitaper
method on {X(t), 0 ≤ t ≤ T − 1} with

gk(u) , vk
(
u+ (N − 1)/2

)
for 0 ≤ k ≤ K − 1,

then for t > (N − 1)/2 we have

U
(k)
t (w) =

T−1∑
u=0

gk(u− t)X(u)e−iwu

=

t+(N−1)/2∑
u=t−(N−1)/2

gk(u− t)X(u)e−iwu.

From Proposition 2 and (16),

E[|U (k)
t (w)|2]

=

∫ π

−π
|Gk(w − λ)|2ft(λ)dλ+O

(
Bgk/BX

)
,

where

Gk(λ) =

∞∑
u=−∞

gk(u)e−iλu =

(N−1)/2∑
u=−(N−1)/2

gk(u)e−iλu.

The estimate of ft(w) is the average of |U (k)
t (w)|2,

f̂Kt (w) =
1

K

K−1∑
k=0

|U (k)(w)|2

and the mean of the estimate given in Theorem 1.
There is a bias/variance/resolution tradeoff for the es-

timate f̂Kt (w). Assuming that ‖ft(w)‖∞ is bounded for
all t, Theorem 2 can be proved by invoking Theorem 4
as given below.

Proof: First, the bias can be bounded,

|Bias(f̂Kt (w))|
=
∣∣E[f̂Kt (w)]− ft(w)

∣∣
≤
∣∣∣∣∫ π

−π
ρK(λ)ft(w − λ)dλ− ft(w)

∣∣∣∣
+O

(
B(K)
g /BX

)
.

From Theorem 4,∣∣∣∣∫ π

−π
ρK(λ)ft(w − λ)dλ− ft(w)

∣∣∣∣
≤
∣∣∣∣∫ π

−π

(
ρK(λ)− 1

2W
1[−W,W ](λ)

)
ft(w − λ)dλ

∣∣∣∣
+

∣∣∣∣∫ π

−π

1

2W
1[−W,W ](λ)ft(w − λ)dλ− ft(w)

∣∣∣∣
(a)

≤ C(log(N)/K +W 2),

where (a) follows from Theorem 4 and the assumption
that ‖ft(w)‖∞ <∞ and C is some positive constant.

When X(t) is a normal process, the variance of
f̂Kt (w) can be characterized as in Theorem 3 and the
proof can be found in Appendix B. Now the MSE of
f̂Kt (w) can be bounded as shown in Corollary 1,

O

((
logN

K

)2

+W 4 +
1

K
+
B

(K)
g

BX

)
,

where we have used the fact that the cross term
W 2(logN/K) is dominated by either W 2 or (logN/K)
depending on whether W 2 ≥ (logN/K) or W 2 ≤
(logN/K), and this argument applies to all the other
cross terms as well.

For the uniformly modulated processes X(t) =
c(t)Y (t), where Y (t) is a stationary process as defined in
Section II-B, BX can be lower bounded by BFY

. Thus,
based on Corollary 1, the MSE of the estimate in the
case can be further bounded as(

logN

K

)2

+W 4 +
1

K
+
B

(K)
g

BFY

.

Recall that K = b2NW c and W can be as small as
2π/N . Thus for stationary processes, the MSE of the
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spectral density estimate decreases as N grows. How-
ever, this is no longer the case for the semi-stationary
processes as B(K)

g /BX may become the dominant term
for N large enough.

For non-stationary processes, it is a natural idea to
approximate it by stationary processes locally. Heuris-
tic methods, such as segmentation, have been devel-
oped [30] to deal with non-stationarity. In the evolu-
tionary spectra framework, BX defined in (3) can be
roughly interpreted the longest “approximately station-
ary” segment [2] of the semi-stationary process. It is thus
tempting to estimate BX . However, it seems that BX
is more of a theoretical technique rather than providing
fundamental meanings. Its definition is tailored to get
the first order approximation of the estimate, which
can be partially seen from Section IV. Furthermore,
characterizing BX is highly non-trivial as shown by
Mélard in [19]. As a comparison, in the locally stationary
processes framework [4], the authors characterized the
optimal choice of N as Nopt, the length of the stationary
segment [31] through minimizing the MSE of a local
covariance estimate. While the characterization is inter-
esting from the theoretical point of view, its application
is limited due to its dependence on the true unknown
parameters.

As a natural application of the evolutionary spectral
density estimate, we propose a non-parametric stationar-
ity test in the next Section.

VI. STATIONARITY TEST

The evolutionary spectral density estimate suggests a
statistical test for the stationarity of a process, as first
discussed in Priestley’s paper [2] and later investigated
by Priestley and Subba Rao (PSR test) in [7]. The origi-
nal version of the PSR test uses the smoothing technique
by introducing a second window, which suffers from bias
leakage problems as discussed in Section IV. In a recent
package developed by Constantine and Percival [32],
smoothing is replaced by the multitaper method. This
modified PSR test has been served as a baseline to
when compared with other stationarity tests, e.g., in [33].
Based on the results from Section V-B, we attempt to
provide some insights into the choice of the parameters
in the test. Furthermore, a non-parametric version of
the stationarity test is proposed, which is based on the
Friedman test [34], [35] and is robust to the underlying
distribution. It serves as a complementary test to the
existing stationarity tests, in the sense that it is more
conservative than PSR, see Section VI-C for details.

A. PSR Stationarity Test with the Multitaper method

Let ft(w) denote the evolutionary spectral density of
a semi-stationary process {X(t) : 0 ≤ t ≤ T − 1}.
Consider the estimate f̂Kt (w) based on the multitaper
method as in Section V and recall that

f̂Kt (w) =
1

K

K−1∑
k=0

|U (k)(w)|2,

where

U
(k)
t (w) =

t+(N−1)/2∑
u=t−(N−1)/2

gk(u− t)X(u)e−iwu.

It is a common practice to take the logarithm of the
estimate, which stabilizes its variance [36]. Let

Yij = log f̂Kti (wj),

Moreover, to apply the two-way analysis of variance
(ANOVA) test [37], it has to be assumed that the
distribution of log f̂Kt (w) is approximately normal [7].
More specifically, it can be shown that Wij = Yij −
ψ(K) + log(K) is approximately distributed according
to the normal distribution with mean 0 and variance
σ2 = ψ′(K) for K ≥ 5, where ψ(·) and ψ′(·) denote
the digamma function and the trigamma function, respec-
tively (see [38] and [16] for details).

The approximate independence in time is obtained by
choosing non-overlapping short windows of length N
and the approximate independence in frequency is by
choosing frequencies that are 2π(K+1)/(N+1) apart 2.
Now the problem reduces to a two-way ANOVA test for
Wij for i ∈ [1 : I] and j ∈ [1 : J ], where I = bT/Nc and
J is the number of frequencies chosen 2π(K+1)/(N +
1) apart. Let

W·· = (1/IJ)

I∑
i=1

J∑
j=1

Wij ,

Wi· = (1/J)

J∑
j=1

Wij ,

W·j = (1/I)

I∑
i=1

Wi.

Between times variance with degrees of freedom I − 1
concerns how uniform are {Wij} over the time indices
1 ≤ i ≤ I ,

ST = J

I∑
i=1

(Wi· −W··)2.

2Buffers are needed at the beginning and at the end when sample
in frequency to overcome the edge effect. The size of the buffer could
be chosen from [B/2, B], where B , 2π(K + 1)/(N + 1).
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Similarly, between frequencies variance with degrees of
freedom J − 1 is

SF = I

J∑
j=1

(W·j −W··)2.

Interaction and residual variance with degrees of freedom
(I − 1)(J − 1) is

SI+R =

I∑
i=1

J∑
j=1

(Wij −Wi· −W·j +W··)
2.

The null hypothesis is that the process is stationary
and the alternative hypothesis is that the process is non-
stationary. The test steps are described in the following.

1) First, test the interaction and residual sum of
squares using SI+R/σ2 = χ2

(I−1)(J−1).
2) If the interaction and residual is not significant, one

conclude that is a uniformly modulated process.
Then proceed to test ST /σ

2 = χ2
(I−1). If the

between-times is not significant, conclude that the
process is stationary. Otherwise, conclude that the
process is non-stationary.

3) If the interaction and residual is significant, con-
clude that the process is non-stationary.

B. A Non-parametric Stationarity Test

There are two main assumptions of the two-way
ANOVA test: (1) the samples are uncorrelated and (2)
the residuals are normally distributed. There has been ex-
tensive research on the robustness of the assumptions for
ANOVA test. It is known that the test statistics depend
heavily on the first assumption and is less sensitive to
the second assumption. The latter is shown empirically
first in [39] and later in [40].

More specifically, the degree of violation of the normal
distribution is usually characterized by the skewness
β1 and flatness β2 of the distribution, where β1 =
E[(X − µ)3]/σ3 and β2 = E[(X − µ)4]/δ4, where µ
and δ2 denote the mean and variance of X , respectively.
The test statistics are less sensitive to the skewness and
flatness of X , essentially due to the central limit theorem
as the the test statistics are based on summation of many
terms. In the PSR test, the test results are more reliable
when the degrees of freedom of time and frequency are
large. On the other hand, nonparametric test, e.g., the
rank-based Friedman test [34], [35], has an edge when
the number of test samples is relatively small.

We now propose the non-parametric test, which will
be referred to as rank-based stationarity test or RS
test in short. Take {Wij} introduced in the previous
section. In the time-frequency table filled by {Wij},

rank the elements in each column in an increasing order
(i.e., 1 corresponds to the smallest element) to form a
table of ranks: {Rij}. Whenever there is a tie among
k elements in the same column, assign the mean rank
of the k elements. Similar to the two-way ANOVA test,
let R·· denote the mean rank of all ranks, denote Ri·
the mean rank of row i. The sum of square of ranks
SSR is SSR = J

∑
i(Ri· − R··)

2. The test statistics
tR = SSR/const, where const = I(I + 1)/12. It is
known that tR is (approximately) distributed according
to χ2

I−1 [34], [35].
Remark 5: Conventionally, the rows are ranked and

then the ranks in each column are summed up to form the
test statistic. To be consistent with the two-way ANOVA
test, the role of row and column are switched in this
work.

C. Simulations

In this section, the performance of the proposed non-
parametric stationarity test is evaluated and compared
with the PSR test for a variety of synthetic data and
real data. In our simulation, we use the multitaper
function pmtm in MATLAB (R2016a) with default values
as in [32]: number of tapers is 5, number of non-
overlapping blocks is max{2, log(T )}, and buffer size
0.7B where B = 2π(K + 1)/(N + 1).

1) Synthetic Data: The performance of a test is
evaluated based on its empirical size and power values.
Generate M = 1000 sample paths/realizations each with
length T = 512 and let the nominal size of the test
be 0.05. The null hypothesis H0 is that the process is
stationary and the alternative hypothesis H1 is that the
process is not stationarity.

For the size comparison, we generate sample paths
from various stationary processes and count the number
of rejections of the null hypothesis. Consider the follow-
ing set of stationary autoregressive and moving-average
(ARMA) models used in [41] The noise term Z(t) is
distributed according to N (0, 1).
(a) i.i.d. standard normal
(b) AR(1): X(t) = 0.9X(t− 1) + Z(t).
(c) AR(1): X(t) = −0.9X(t− 1) + Z(t).
(d) MA(1): X(t) = Z(t) + 0.8Z(t− 1).
(e) MA(1): X(t) = Z(t)− 0.8Z(t− 1).
(f) ARMA(1,2): X(t) = −0.4X(t) +Z(t)− 0.8Z(t−

1).
(g) AR(2): X(t) = α1X(t−1)+α2X(t−2)+Z(t) with

α1 = 1.385929 and α2 = −0.9604 (from [42]).

The empirical sizes for PSR is smaller in [41] than
that in Table I, but still at least twice as large as the
empirical sizes of RS for all the models in Table I. The
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Table I. Empirical size comparison (%)

models PSR RS
(a) 11.1 1.9
(b) 17.7 2.9
(c) 11.2 2.7
(d) 12.7 2.5
(e) 14.8 2.9
(f) 15.3 2.6
(g) 78.7 6.1

differences in PSR from [41] could be due to differences
in parameters such as number of tapers, number of non-
overlapping blocks, buffer size, etc.

For the power comparison, we generate sample paths
from semi-stationary processes and count the number
of acceptances of the null hypothesis. We focus on
the uniformly modulated processes as in [2], [7]. The
following model is from [7],

X(t) = e(t−T/2)2/2a2

Y (t), (18)

where a = 200 and Yt = 0.8Yt−1 − 0.4Yt−2 + Zt with
Zt ∼ N (0, 1002). For all the models from Table I,
generate uniformly modulated processes by multiplying
each of them with e(t−T/2)2/2a2

. To make the numbering
consistent with Table I, these models are also numbered
from (a) to (g) and model (18) will be numbered as (h)
in the table below.

Table II. Empirical power comparison (%)

models PSR RS
(a) 96.7 88.4
(b) 96.8 82.5
(c) 97.3 88.9
(d) 96.4 88.1
(e) 97.3 87.1
(f) 97.1 86.2
(g) 98.3 76.7
(h) 96.4 88.4

Since the empirical size of RS is smaller than that of
PSR but the empirical power is also smaller, RS is a
more conservative test compared with PSR.

2) Real Data: We consider a real data example called
ecgrr used in [32] and comes from ‘RR interval time
series modeling: A challenge from PhysioNet and Com-
puters in Cardiology 2002’ site of PhysioNet. The data
are the RR intervals (beat-to-beat intervals measured
between successive peaks of the QRS complex) for
patients in normal sinus rhythm (record 16265 of the

MIT-BIH database). The length of the sample T = 512
and the nominal size of the test be 0.05 as in the previous
section. Recall that the test statistics for PSR are ST /σ2

and SI+R/σ2 and that for RS is tR. Both PSR and RS
suggest that the the process is non-stationary and their
test statistics are summarized in the following tables.

Table III. Test result of PSR

ST /σ
2 SI+R/σ

2

Chi-square quantile 16.919 72.1532
PSR 40.4927 67.7689

Table IV. Test result of RS

tR
Chi-square quantile 16.919

RS 22.8

3) Real Data: purchasing power parity: In eco-
nomics, a common practice to test the purchasing power
parity (PPP) hypothesis via testing the stationarity of
real exchange rates (RER). Some earlier studies using
unit root tests yielded results that were not favorable
to PPP (see for example [43]–[45]). In this real data
study, we test the stationarity of RER of four countries
(Canada, China, Japan, UK) with respect to US over
the period of January 1970 to December 2017. The
monthly data of RER were calculated by E · P ∗/P ,
where E, P ∗ and P respectively denote the nominal
exchange rates, the foreign price level (evaluated using
consumer price index) and the domestic price level, using
data sources from International Financial Statistics of the
International Monetary Fund, Financial Statistics of the
Federal Reserve Board, Haver Analytics, and the Pacific
Exchange Rate Service. In the experiments, we take the
widely used transform: the log first-order difference, i.e.,
log(Xt)− log(Xt−1) for 2 ≤ t ≤ N with {Xt : 1 ≤ N}
denote the RER.

Table V. Test results of PSR

ST /σ
2 SI+R/σ

2

Chi-square quantile (5%) 15.5073 36.415
Chi-square quantile (1%) 20.0902 42.9798

PSR (Canada) 69.4236 42.6526
PSR (China) 637.9477 29.5066
PSR (Japan) 18.4479 13.6801
PSR (UK) 24.1467 32.9519

Based on RS test and ST /σ
2 of the PSR test, one

could order the stationarity of the four countries (in terms
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Table VI. Tests result of RS

tR
Chi-square quantile (5%) 15.5073
Chi-square quantile (1%) 20.0902

RS (Canada) 22.0
RS (China) 30.8
RS (Japan) 16.3
RS (UK) 19.7

of RER) from the most stationary to least stationary as:
Japan, UK, Canada, China. When choosing 1% as the
nominal size of the test, RS test suggests that RER of
both Japan and UK are stationary with Canada close to
stationary; while PSR test suggests that RER of Japan
is stationary and RER of UK is close to stationary. Both
tests (under both 5% and 1%) suggest that RER of China
is non-stationary.

APPENDIX A
PROOF OF LEMMA 1

Proof: The statement can be proved by observing∫ π

−π
|G(w)|2ft(w + v)dw

= ft(v)

∫ π

−π
|G(w)|2dw +R(v),

where

|R(v)| = |
∫ π

−π
w|G(w)|2f ′t(v + η(w)w)dw|

≤ sup
−π≤w≤π

|f ′t(w)|
∫ π

−π
|w||G(w)|2dw,

where 0 ≤ η(w) ≤ 1 for all w.

APPENDIX B
PROOF OF THEOREM 3

Proof: The variance of f̂Kt (w) can be expressed as,

Var(f̂Kt (w))

= Var

(
1

K

K−1∑
k=0

|U (k)
t (w)|2

)

=
1

K2

K−1∑
k,l=0

Cov

(
|U (k)
t (w)|2, |U (l)

t (w)|2
)
.

First, Cov
(
|U (k)
t (w)|2, |U (l)

t (w)|2
)

can be rewritten
as (19), which is shown on the top of the next page. Sim-
ilar to Proposition 2, we can further express S1 and S2

as (20) and (21), respectively. Now, since ‖ft(w)‖∞ <
∞, ∣∣∣∣K−1∑

k,l=0

Cov

(
|U (k)
t (w)|2, |U (l)

t (w)|2
)∣∣∣∣

≤
∣∣∣∣K−1∑
k,l=0

S1

∣∣∣∣+

∣∣∣∣K−1∑
k,l=0

S2

∣∣∣∣
(a)

≤ 2K +

K−1∑
k=0

O(Bgk/BX),

where (a) follows from (22) and a similar argument for
S2, as well as the orthogonality condition (15). This
finishes the proof.
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Cov

(
|U (k)
t (w)|2, |U (l)

t (w)|2
)

= Cov

(∑
u1,u2

gk(u1 − t)gk(u2 − t)X(u1)X(u2)e−iwu1eiwu2 ,
∑
u3,u4

gl(u3 − t)gl(u4 − t)X(u3)X(u4)e−iwu3eiwu4

)
(a)
= S1 + S2, (19)

where (a) follows from the Isserlis’ theorem [46] and ui ∈ [t− (N − 1)/2 : t+ (N − 1)/2] for i ∈ [1 : 4] with

S1 =
∑

u1,u2,u3,u4

gk(u1 − t)gk(u2 − t)gl(u3 − t)gl(u4 − t)E[X(u1)X(u3)]E[X(u2)X(u4)]e−iwu1eiwu2e−iwu3eiwu4 ,

S2 =
∑

u1,u2,u3,u4

gk(u1 − t)gk(u2 − t)gl(u3 − t)gl(u4 − t)E[X(u1)X(u4)]E[X(u2)X(u3)]e−iwu1eiwu2e−iwu3eiwu4 .

S1 =
∑

v1,v2,v3,v4

gk(v1)gk(v2)gl(v3)gl(v4)e−iw(v1+t)eiw(v2+t)e−iw(v3+t)eiw(v4+t)

·
∫ π

−π
Av1+t(λ)A∗v3+t(λ)eiλ(v1+t)e−iλ(v3+t)dµ(λ)

∫ π

−π
Av2+t(ξ)A

∗
v4+t(ξ)e

iξ(v2+t)e−iξ(v4+t)dµ(ξ)

=

∫ π

−π

∑
v1,v3

gk(v1)gl(v3)e−iw(v1+t)e−iw(v3+t)Av1+t(λ)A∗v3+t(λ)eiλ(v1+t)e−iλ(v3+t)dµ(λ)∫ π

−π

∑
v2,v4

gk(v2)gl(v4)eiw(v2+t)eiw(v4+t)Av2+t(ξ)A
∗
v4+t(ξ)e

iξ(v2+t)e−iξ(v4+t)dµ(ξ)
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