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Summary. We introduce a new criterion for variable selection in regres-

sion models, and show its optimality in terms of both loss and risk under

appropriate assumptions. The key idea is to impose a penalty that is non-

linear in model dimensions. In contrast to the state-of-art model selec-

tion criteria such as the Cp method, delete-1 or delete-k cross-validation,

Akaike information criterion, Bayesian information criterion, the proposed

method is able to achieve asymptotic loss and risk efficiency in both para-

metric and nonparametric regression settings, giving new insights on the

reconciliation of two types of classical criteria with different asymptotic be-

haviors. Adaptivity and wide applicability of the new criterion are demon-

strated by several numerical experiments. Unless the signal to noise ratio

is very low, it performs better than some popular methods in our experi-

mental study. An R package ‘bc’ is released that serves as a supplement

to this work.
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1. Introduction

Consider the task of estimating the regression function f(x) = E(Y |

X = x). With a given class of linear models, indexed by α ∈ An
where n is the number of observations, we need to select one of them

to best capture the underlying distribution of the data or best predict

the future response. Suppose that each α is a subset of {1, . . . , dn},

and that the least squares estimator (LSE) is used to fit each candi-

date model. Given the design matrix X = [xT

1 , . . . ,x
T

n]T and observations

yn = [y1, . . . , yn]T, our goal is to select α ∈ An that minimizes the squared

error loss Ln(α) = n−1‖fn − f̂n(α)‖2, or the risk Rn(α) = E{Ln(α)}

(where the expectation is with respect to random noises) as much as pos-

sible. Here, fn
∆
= [f(x1), . . . , f(xn)]T, f̂n(α) is the LSE of fn in model

α, and ‖·‖ denotes the Euclidean norm. The above framework includes

the usual variable selection and subset selection in linear regression, and

the selection of basis such as polynomials, splines, or wavelets in function

estimation. We also note that approaching the minimal loss or risk is

usually equivalent to achieving consistency in variable selection when the

true data generating model is inside An, as elaborated later in the paper.

A wide variety of criteria for variable selection have been proposed

in the literature, motivated from different viewpoints and justified under

various circumstances. Comparisons of merits and shortcomings of these

methods have flourished in the past decades (Stone, 1979; Shibata, 1981;

Nishii et al., 1984; Li, 1987; Rao and Wu, 1989; Speed and Yu, 1993; Shao,

1993; Yang and Barron, 1998). A detailed summary can be found in the

work of Shao (1997). These methods typically fall into two classes accord-
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ing to their asymptotic performances. Methods in the first class achieve

consistency, in the sense that the correct model with the smallest dimen-

sion is selected with probability going to one as n tends to infinity. How-

ever, they usually perform sub-optimally when An does not contain any

data generating model (a correct model). Examples include the Bayesian

information criterion (BIC) (Schwarz, 1978), minimum description length

(MDL) criterion (Barron et al., 1998; Hansen and Yu, 2001), Bayes fac-

tors (Casella et al., 2009), the delete-k cross-validation (CV) method with

limn→∞ k/n = 1 (Geisser, 1975; Burman, 1989; Shao, 1993; Zhang, 1993),

Generalized information criterion (GICλn) with λn → ∞ (Nishii et al.,

1984; Rao and Wu, 1989). Some other methods motivated from the lit-

erature of autoregressive order selection include the Hannan and Quinn

(HQ) criterion (Hannan and Quinn, 1979), the predictive minimum de-

scription length (PMDL) criterion (Rissanen, 1986; Wei, 1992), and the

predictive least squares (PLS) principle (Wei, 1992).

Methods in the second class usually achieve asymptotic efficiency, in

the sense that their predictive performance are asymptotically equivalent

to the best offered by the candidate models, when An contains no more

than one correct model. They tend to overfit when there are at least

two correct candidate models. In other words, the smallest correct model

cannot be selected with probability going to one as n increases. Examples

include the Akaike information criterion (AIC) (Akaike, 1970, 1998), Cp

method (Mallows, 1973), final prediction error (FPE) criterion (Akaike,

1969), the generalized CV (GCV) method (Craven and Wahba, 1978), the

delete-1 CV method (Stone, 1977) (or leave-one-out, LOO), and GICλn

with λn = 2 (Shao, 1997). One can define another class by considering,

for example, delete-k CV with k/n → ρ ∈ (0, 1) and GICλn with λn 6= 2

being a constant. But these criteria usually do not exhibit asymptotic

efficiency in typical situations of interest. From the above, the following
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question naturally arises:

Is it even possible to adaptively achieve the better performance of

the two classes in all situations? Also, for a variety of choices of An,

which may or may not contain correct model(s), is there a simple way

to consitently select the model that attains the lower bound of Ln(α) or

Rn(α) as n tends to infinity? These questions are important because in

real applications, usually a data analyst does not know whether the data

generating model is correctly specified or even finite dimensional.

As was discussed before, the ability to consistently identify the smallest

correct model when An contains at least two correct models is the typical

watershed of the two classes. We note that consistency in selection implies

asymptotic loss/risk efficiency (which will be elaborated in the next sec-

tion). Thus, an ideal model selection criterion that combines the merits

of both classes would behave in the following manner. It achieves consis-

tency whenever An contains at least one correct model (for all sufficiently

large n), and asymptotic efficiency whenever An does not contain any cor-

rect model. The above two situations are also referred to as “parametric”

and “nonparametric”, respectively. Throughout the paper, we allow the

data generating models (and their dimensions in the parametric case) to

be dependent on n. Fortunately, there have been some work towards the

direction of adaptive selection procedures. One approach is to take data-

dependent penalties that bring in adaptation capabilities (Barron et al.,

1994; Hansen and Yu, 2001). Yang (2007) proposed an approach that

examines whether BIC selects the same model successively at different

sample sizes, in order to adaptively achieve asymptotic efficiency in both

parametric and nonparametric situations. Ing (2007) proposed a hybrid

selection procedure combining AIC and BIC in the context of order se-

lection of autoregressive models. A measure called parametricness index

was proposed by Liu and Yang (2011) to adaptively switch between AIC
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and BIC regimes. Erven et al. (2012) proposed to use a switching distri-

bution to perform sequential Bayesian model averaging or to encourage

early switch to a better model. Their predictive approach can adaptively

achieve the optimal cumulative risk convergence rates and thus provide a

Bayesian remedy for the AIC-BIC dilemma. Zhang and Yang (2015) pro-

posed a CV procedure for choosing between model selection criteria, and

showed that the hybrid criterion asymptotically behaves like the better

one of AIC and BIC under a suitably chosen data splitting ratio. In a

recent work, Ding et al. (2018) proposed a criterion referred to as Bridge

criterion for autoregressive order selection. The main idea is to penalize

different model dimensions with nonlinear penalty terms, in contrast to

the linear terms used by AIC and BIC. In this work, we introduce a new

criterion for regression variable selection or subset selection, motivated by

a similar idea in (Ding et al., 2018). We stress, however, that the results

developed for autoregressive order selection problem can not be trivially

applied to regression problems. The candidate models as represented by

subsets of variables are usually non-nested, and the form of the criterion

is going to be different (as much different as Cp is from AIC). We will

also extend the proposed approach to high dimensional regression. But

due to a similar spirit in choosing the penalty terms, we shall also refer

to the method as Bridge criterion (BC).

The purpose of this work is to provide a theoretical possibility that

the two classes of model selection criteria can be reconciled in one cri-

terion for regression problems. As was summarized by Shao (1997), the

classical criteria may be written in a form that involves a penalty term

proportional to the dimension of each model. In contrast, a key element

of the introduced BC criterion is that the penalty term is proportional

to 1 + 2−1 + · · · + d−1 for each model of dimension d. As we shall see,

employment of this harmonic number makes it intrinsically different with
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any existing model selection criterion, and also “bridges” the features

of the two classes. Under some regularity conditions, we show that BC

achieves the consistency in parametric settings and asymptotic efficiency

in nonparametric settings. As a result, it achieves the asymptotic loss

and risk efficiency in rather general situations.

The outline of this paper is given below. In Section 2, we propose

the new variable selection criterion and define a measure called paramet-

ricness index, along with intuitive explanations. In Section 3, we review

the GICλn method with λn = 2 and λn → ∞, with some extensions of

existing results. They serve as the two representatives of various state-

of-art methods. And based on those extensions, we rigorously prove the

asymptotic loss and risk optimality of the new criterion in various set-

tings under reasonable assumptions. In Section 4, an adaptation of the

proposed method is further applied to high dimensional variable selection

where sample size could be smaller than model dimensions. Numerical

results are given in Section B demonstrating the performances of the pro-

posed method. We make our conclusions in Section 5, and outline some

discussions on future work.

2. A new variable selection criterion

We define

Sn(α) = ‖yn − f̂n(α)‖2, (1)

and let σ̂2
n be an estimator of σ2. Many model selection procedures are

equivalent or closely related to the following Generalized information cri-

terion (or GICλn procedure) which selects

α̂n = arg min
α∈An

Gn,λn(α)
∆
=
Sn(α)

n
+
λnσ̂

2
ndn(α)

n
, (2)
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where λn is a deterministic sequence of n that controls the trade-off be-

tween the goodness-of-fit and model parsimoniousness (Shao, 1997). If

there exist more than one minimizers in (2), we arbitrarily choose one

of them as α̂n (e.g. the one with the smallest dimension). Recall that

ᾱn = {1, . . . , dn}. With σ̂2
n

∆
= (n − dn)−1S(ᾱn), GIC2 reduces to the

Cp method (Mallows, 1973) and GICλn with n−1λn + λ−1
n (log log n)→ 0

is the GIC method proposed by Rao and Wu (1989). If we replace σ̂2
n

with {n − dn(α)}−1S(α) and assume n−1λndn + n−1/2dn → 0, then a

direct calculation (using log(1 +x) = x+o(x)) shows that (2) is basically

equivalent to minimizing

log
Sn(α)

n
+
λndn(α)

n
. (3)

In this case, λn = 2 corresponds to AIC and λn = log n corresponds to

BIC. Moreover, AIC was shown to be asymptotically equivalent to delete-

1 CV (Stone, 1977) and GCV if dn = o(n) (Shao, 1997). In general,

delete-k CV has the same asymptotic behavior as the GICλn with (Shao,

1997)

λn =
n

n− k
+ 1. (4)

We propose the following Bridge criterion (BC):

α̂bc = arg min
α∈An,dn(α)≤dn(α̂gic2

)
Bn,λn(α)

∆
=
Sn(α)

n
+
λnσ̂

2
nHdn(α)

n
(5)

where α̂gic2
is the model selected by GIC2 procedure, and Hdn(α) =∑dn(α)

k=1 k−1. The major difference with GICλn and many others is that

the penalty function of BC is nonlinear in model dimension. More details

on σ̂2
n, λn, and the performance of BC and GIC will be examined in the

next section.

Below we provide some intuitive explanations. In BC, we start by

imposing a GICλn-type (λn →∞) heavy penalty, but alleviate it more and

more to endow the selection procedure with the following self-awareness.



8

1) if the model class is eventually parametric, some parsimonious

model (αcn) is already adequately explaining the data, so that extra di-

mensions become more and more obviously redundant; In other words,

the models likely to be selected by BC are of dimensions no more than

Op(1) above dn(αcn). But, within that region, the dispensable candidates

suffer from extra penalties

λnσ̂
2
n

n

(
1

dn(αcn) + 1
+ · · ·+ 1

dn(α)

)
=

λn
dn(αcn)

σ̂2
n

n
Op(1) (6)

compared with (the optimal one) αcn. As long as λn/dn(αcn) → ∞ and

σ̂n 6→p 0, (6) resembles that of GICλn , thus exhibiting similar asymptotic

behavior.

2) if the model class is nonparametric, any model of a fixed dimension

is usually not able to take advantage of more and more observations; thus,

increasingly higher dimensions are likely to be selected. In other words,

larger models tend to be favored, and this is even more accelerated by the

smaller and smaller penalty increments induced by Hdn(α). As a result,

if λn diverges not too rapidly, BC selects the largest model α̂gic2
, which

is asymptotically loss and risk efficient.

The theoretical analysis of BC will be elaborated in the next section.

We shall show that for a wide variety of λn’s and parametric/nonparametric

situations, BC enjoys the universal optimality (in terms of handling both

parametric and nonparametric settings). We suggest λn = n1/3 based

on our extensive numerical experiments. A reasonable baseline level of

performance is achieved without further tuning of λn.

Building upon the proposed criterion, we define the following quan-

tity referred to as parametricness index (PI). pin = 1 if dn(α̂gic2
) =

dn(α̂gicλn ) = dn(α̂bc), and

pin =
dn(α̂gic2

)− dn(α̂bc)

dn(α̂gic2
)− dn(α̂bc) + |dn(α̂bc)− dn(α̂gicλn )|
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otherwise, given a prescribed candidate set An. The λn in the above

GICλn is chosen to be a diverging sequence to ensure consistency in the

parametric scenario. From the literature, we suggest λn = log n so that

GICλn performs closely to BIC. Following our definition, pin ∈ [0, 1]. Intu-

itively, pin is close to one in parametric scenario where dn(α̂bc), dn(α̂gicλn )

do not differ much, while close to zero in nonparametric scenario where

dn(α̂bc) and dn(α̂gic2
) are close and larger than dn(α̂gicλn ).

The goal of PI is to measure the extent to which the specified model

class is adequate in explaining the observed data, namely to assess the

confidence that the selected model can be practically treated as the data-

generating model (given sample size n). The larger pin, the more confi-

dence. In parametric situations where BC and GICλn are consistent in

variable selection, clearly we have pin →p 1. Also, whether P{pin ≤ t} →

1 for some constant t < 1 in nonparametric situations depends on more

knowledge about Rn(·). We shall provide Proposition 3 in Section 3 that

indicates the following simple rule for answering the question if we are in

a parametric or nonparametric scenario: regard it parametric if pin > t

for some 0 < t < 1 and nonparametric otherwise.

3. Asymptotic performance of classical criteria and BC

In this section, we review the asymptotic performance of classical criteria

in parametric and nonparametric situations, and provide some extensions

of existing results. In addition, we show that no existing method, or any

new one for that matter, can be consistent in selection of the best model

for nonparametric situations. Based on this, for adaptation over paramet-

ric and nonparametric situations, while adaptive selection consistency is

clearly ruled out, there is still hope to achieve asymptotic efficiency adap-

tively. We then prove that the proposed Bridge criterion can achieve such
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goal.

3.1. Regression models and goals

Let An denote the class of candidate models. Without loss of generality,

we assume that ᾱn = {1, . . . , dn} is the largest model in An. It is common

to allow dn to diverge with n in order to include any correct model with

fixed dimension (if there exists), and to achieve optimal loss/risk when

no candidate model is correct. We assume that XT

nXn, n = 1, 2, . . . are

non-random and invertible. We consider the classical setting n > dn

for now, until we generalize it in Section 4. We refer to dn(α) as the

dimension of model α. Each α ∈ An denotes the candidate linear model

that assumes fn is in the column linear span of Xn(α), the corresponding

n× dn(α) sub-matrix of Xn. In other words, the LSE of fn under model

α is f̂n(α) = Pn(α)yn, where Pn(α) = Xn(α){Xn(α)TXn(α)}−1Xn(α)T.

We define

∆n(α) = n−1‖Pn(α)⊥fn‖2 (7)

and refer to it as the model approximation error. A candidate model α is

correct if it satisfies ∆n(α) = 0. Let Acn denote the set of all the correct

candidate models in An. Let en = yn − fn = [e1, . . . , en]T denote the

noise vector. We assume that e1, . . . , en are independent and identically

distributed (i.i.d.) with variance σ2 > 0.

Throughout this paper, the model class is referred to as “parametric”

if Acn 6= ∅, and “nonparametric” if Acn = ∅, for all sufficiently large n.

Subsection B.1 includes a specific example showing the parametric and

nonparametric settings. If Acn 6= ∅, we let αcn denote the model in Acn
with the smallest dimension. We make the following assumptions. For all
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sufficiently large n,

αcn ⊆ α, ∀α ∈ Acn \ {αcn} if Acn 6= {αcn}, (8)

max
α∈An\Acn

Rn(αcn)

Rn(α)
→ 0 if 0 < card(Acn) < card(An). (9)

Assumption (8) guarantees that αcn is uniquely defined, and that αcn min-

imizes Rn(α) over Acn. Assumption (9) is required to distinguish the

“parametric” from the “nonparametric”. Instead of assumptions (8) and

(9), we may also assume that αcn is fixed and there exists a fixed vector

β (which does not depend on n) satisfying

fn = Xn(αcn)β, eigmin(XT

nXn) ∼ n, eigmax(XT

nXn) ∼ n, n−1dn → 0.

(10)

The conditions given in (10) were commonly used in prior work (Rao

and Wu, 1989; Shao, 1997). Note that these conditions are stronger than

our assumptions (8)-(9), which allow high dimensional settings where

αcn varies with n. To see it, suppose that there exists αc ∈ Acn such

that αcn 6⊆ αc. Then some columns of Xn are linearly dependent, which

contradicts the second condition in (10). This implies (8). In addition,

the first three conditions in (10) imply that

lim inf
n→∞

min
α∈An\Acn

∆n(α) > 0 if 0 < card(Acn) < card(An), (11)

which, together with n−1dn → 0, result in (9).

The loss and risk defined above may be written as

Ln(α) = ∆n(α) +
‖en‖2Pn(α)

n
, Rn(α) = ∆n(α) +

σ2dn(α)

n
. (12)

Define

ALn =

{
α : α ∈ An, Ln(α) = min

α′∈An
Ln(α′)

}
.
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We let αLn denote the model with the smallest dimension in ALn (and we

arbitrarily pick up one from ALn if it is not unique). When ALn contains

only one element, we write ALn = {αLn}. We similarly define ARn and αRn .

A model selection procedure is said to be L-consistent if P(α̂n ∈ ALn)→ 1,

and asymptotically loss efficient if Ln(α̂n)/Ln(αLn) →p 1. Note that the

former concept implies the later one. Similarly, the R-consistency and

asymptotic risk efficiency are respectively defined by P(α̂n ∈ ARn ) → 1,

and Rn(α̂n)/Rn(αRn ) →p 1. We say Rn(·) is regular, if for any sequence

{αn} that Rn(αn)/Rn(αRn ) → 1, we have maxα∈ARn {|dn(αn)/dn(α) −

1|} → 0.

3.2. Selection consistency and prediction efficiency

Proposition 1 gives sufficient conditions under which the consistency in

selection and asymptotic efficiency are equivalent.

Proposition 1. Suppose that Acn 6= ∅ for all sufficiently large n.

(i) Under conditions (8), (9), and∑
α∈An\Acn

{nRn(α)}−m1 → 0 if An 6= Acn, (13)

for some fixed constant m1 ≥ 1 satisfying E(e4m1

1 ) <∞ (recall that

e1 is the noise term), we have

P
{
ARn = {αRn }, ALn = {αLn}, αLn = αcn = αRn

}
→ 1. (14)

(ii) If we further assume that dn(αcn) < d for some fixed constant d > 0,

and

lim inf
n→∞

P
{

min
α∈Acn\{αcn}

‖en‖2Pn(α)−Pn(αcn) > δ

}
> 0 (15)

for some fixed constant δ > 0, then L-consistency and R-consistency,

and asymptotic loss and risk efficiency are all equivalent.
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We note that (13) is a regularity condition that has been commonly

used to derive asymptotic results, for example in (Li, 1987, A.3) and (Shao,

1997, eq.(2.6)). Consider, for example, the typical case where Rn(α) >

n−ζ for all α ∈ An \ Acn and a fixed ζ < 1. Suppose that card(An \ Acn)

increases as a polynomial in n, and that the moment generating func-

tion of ei exists, then condition (13) is met. An assumption stronger

than (13) was made in (Shibata, 1981, Assumption 2). Condition (15)

holds if, for example, en is Gaussian and Acn is a nested class such as

Acn = {{1}, {1, 2}, . . .}.

3.3. Asymptotic performance of Generalized information criterion

It has been shown that the asymptotic performance of GICλn procedure

(and thus many others) largely depends on the choice of λn (Nishii et al.,

1984; Li, 1987; Rao and Wu, 1989; Shao, 1997). As a summary and ex-

tension of existing results, we provide the following proposition for GICλn

in two representing cases: λn = 2 and λn → ∞. In the sequel, we shall

refer to the two cases as GIC2 and GICλn , respectively. The proof of

asymptotic loss efficiency in case (i) (assuming αcn does not depend on

n) and case (ii) were studied in Theorem 1 (i)(iii) and Theorem 2 (ii)

in (Shao, 1997). Proposition 2 summarizes both loss and risk efficiency

in two cases under weaker conditions.

Proposition 2. Assume that σ̂2
n →p σ

2 and conditions (8), (9), (13)

hold.

(i) In the case that Acn 6= ∅ for all sufficiently large n (parametric), if
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we further assume that

lim sup
n→∞

max
α∈An\Acn

Rn(αcn)

Rn(α)
λn < 1, (16)

lim sup
n→∞

∑
α∈Acn\{αcn}

{dn(α)− dn(αcn)}−m2 <∞ (17)

for some fixed constant m2 ≥ 1 satisfying E(e4m2

1 ) <∞, then GICλn

with λn →∞ is L-consistent and R-consistent.

(ii) In the case that card(Acn) ≤ 1 for all sufficiently large n (parametric

with a unique correct candidate model or nonparametric), then GIC2

is asymptotically loss and risk efficient.

Remark 1 (Interpretation of each condition). Condition (16)

requires λn to be not too large so that the selection procedure does not un-

derfit. If for case (i) we assume the stronger condition (10) (thus (11)),

then (16) can be implied from lim supn→∞ n−1λndn(αcn) = o(1). If we

further assume a fixed dn(αcn) that does not depend on n, then it suffices

to require λn = o(n), as is often assumed in the classical model selection

papers.

Assumption (17) is a regularity condition that implicitly controls the

number of low-dimensional true models, so that the minimal one αcn can

be distinguished between the remaining ones in Acn. For nested models in

the form of Acn = {α1, α2, . . .}, α1 ( α2 ( · · · , (17) is trivially satisfied

given any m2 > 1.

It is assumed that σ̂2
n →p σ

2 in both cases. A popular choice is to let

σ̂2
n = S(ᾱn)/(n−dn). It is consistent for σ2 if Acn 6= ∅, but not necessarily

so if Acn = ∅. For Acn = ∅, it has been proved in (Shao, 1997, Thm.1A)

that the additional assumptions ∆n(ᾱn) → 0, dn/n 6→ 1 guarantee that

σ̂2
n →p σ

2.

We note that the results of both cases allow αcn to vary with n. In that

sense, what is essential to distinguish the parametric and nonparametric
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situations is not the existence of a correct model of fixed dimension, but

the rate of convergence of risks in Acn and An \ Acn (condition (9)).

Proposition 2 states the asymptotic loss/risk efficiency of GIC2 (resp.

GICλn) in the nonparametric (resp. parametric) case. In addition, if Acn
contains more than one correct model with fixed dimensions, then GIC2

is typically not asymptotically loss efficient (Shao, 1997, Thm.1(iii)). On

the other hand, GICλn is typically not asymptotically efficient in nonpara-

metric situations (Shao, 1997, p.230). These will also be demonstrated

by our numerical experiments.

3.4. Can we select the best model consistently in the nonparametric

situations?

Related to the questions proposed in Section 1, we have discussed that

selection consistency (in terms of both loss and risk) is achievable in

parametric situations. Proposition 1 also shows that asymptotic efficiency

is often equivalent to consistency in a parametric model class.

For nonparametric situations, is it possible to consistently identify the

best model (in terms of the smallest loss/risk)? This subsection gives a

negative answer under mild conditions (which are easily met under famil-

iar model approximation errors). In other words, one could approach but

not exactly achieve the optimal risk, meaning that asymptotic efficiency

is a more suitable concept than selection consistency for nonparametric

model classes. This understanding is important because it immediately

rules out the possibility of adaptation over parametric and nonparametric

situations in terms of selection of the best model, but still leaves the door

open for pursuing adaptive optimal estimation of the regression function.

Indeed, in the next section, we propose an adaptive method that achieves

asymptotic loss/risk efficiency in both parametric and nonparametric sit-
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uations.

In the following theorem and its corollary, we show under reasonable

assumptions that selection consistency in nonparametric models is often

unrealistic. In the following theoretical analysis, we shall focus on risk

consistency due to the discussion in Subsection 3.2. Most of the state-

of-the-art variable selection criteria as introduced before are based on

the least squares fitting error Sn(α) that is defined in (1). Let SAn
∆
=

[Sn(α)]α∈An be the vector of fitting errors of each model in An. Let the

map yn 7→ ψn(yn,An) ∈ An indicate a model selection procedure. Our

results are concerned with a class of selection rules satisfying the following

two properties.

(P1) Least squares sufficiency : The selection criterion ψn(yn,An) can

be written as φn(SAn) for some mapping SAn 7→ φn(SAn) ∈ An. In other

words, the selection is only using the information from least squares error

SAn .

(P2) Reduction compatibility : The selection result α̂ remains unchanged

if any subset excluding α̂ is removed from An (and correspondingly SAn

is reduced). In other words, if A′n ⊂ An and φn(SAn) ∈ A′n, then

φn(SAn) = φn(SA′
n
).

A selection criterion is said to be normal, if it satisfies properties (P1)

and (P2). Clearly, all the penalized selection criteria as introduced before

are normal selection criteria.

Theorem 1. Assume that the noises e1, . . . , en are i.i.d. Gaussian

with zero mean and variance σ2. Suppose that the model class is nested

in the form of An = {α1, . . . , αdn}, αj = {1, . . . , j}, and Acn = ∅. Suppose

that for all sufficiently large n,

(i) ∆n(ᾱn)→ 0, dn/n→ 0;

(ii) Rn(αRn ) > n−ζ for some fixed constants ζ ∈ (0, 1);
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(iii) card(ARn ) < C for some fixed constant C;

(iv) ∆n(α) depends only on α;

(v) ∆n(αRn ) < b for some constant b

(vi) There exists n′ (n′ > n) that is a function of n and satisfies

n−1/2(n− n′)→ 0 (18)

n−1/2{d(αRn )− d(αRn′)} → 0, n{∆n(αRn )−∆n(αRn′)} → ∞ (19)

αRn ( αRn′ , d(αRn′) ≤ dn (20)

for any αRn ∈ ARn and αRn′ ∈ ARn′.

Then asymptotic efficiency can be achieved (e.g. using GIC2), while for

any normal selection criterion ψ

lim sup
n→∞

Pn
{
ψn(yn,An) 6∈ ARn

}
> 0, (21)

where Pn denotes the probability under the distribution of yn.

In particular, all the above conditions are met if the model approxima-

tion error is in the familiar form of ∆n(α) = c d(α)−γ with c > 0, 0 <

γ < 1.

A more general result is summarized in Proposition 4 in the supple-

mentary file. We note that in the limit of (21), yn and yn′ (n 6= n′)

are not required to be independent, so that the result applies to either

independent realizations or a single realization as n varies.

3.5. Adaptive optimality of Bridge criterion

Recall that our goal of adaptive optimal variable selection is to achieve

L-consistency and R-consistency in parametric settings and asymptotic

loss/risk efficiency in nonparametric settings (thus asymptotic efficiency

in general). Theorem 2 below establishes the asymptotic optimality of
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our proposed Bridge criterion. Its proof is in line with the intuitions

explained in Section 2.

Theorem 2. Assume that σ̂2
n →p σ

2, conditions (8), (9), (13) hold,

and either of the following set of conditions hold for all sufficiently large

n.

• Case 1: Acn 6= ∅, λn satisfies (16), and

λn
dn(αcn)

→∞. (22)

Additionally, there exists a fixed constant m3 ≥ 1 such that E(e4m3

1 ) <

∞, and

lim
`→∞

lim sup
n→∞

∑
α∈Acn, dn(α)−dn(αcn)>`

{dn(α)− dn(αcn)}−m3 = 0, (23)

lim sup
n→∞

∑
α∈Acn, dn(α)−dn(αcn)<k

{dn(α)− dn(αcn)}−m3 <∞ (24)

for any fixed positive integer k.

• Case 2: Acn = ∅, λn satisfies

λn ≤
q dn(αRn )

log dn(αRn )
(25)

for any fixed constant 0 < q < 2(d0 − 1)/d0, where d0 > 1 is a

constant such that dn(αRn ) ≥ d0, and Rn(·) is regular.

Then Bridge criterion is L-consistent and R-consistent in the first

case (Acn 6= ∅), and asymptotically loss and risk efficient in the second

case (Acn = ∅).

3.6. Assessment of parametricness

The next Proposition 3 shows that our proposed pin converges in proba-

bility to one if the model class exhibits parametricness, and to zero oth-

erwise, under some assumptions. Experimental studies in Section B show
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that pin does provide the intended indications. For large n, it is either

close to one or not, depending on whether it is truly parametric or not.

In the experimental study, we also report another definition of PI given

by Liu and Yang (2011), denoted by pi
(2)
n . The intuition is that dropping

few variables produces a significantly larger increase of fitting error in a

parametric model class than in a nonparametric one. pi
(2)
n was shown

to converges in probability to ∞ and 1 in parametric and nonparametric

scenarios, respectively.

Proposition 3. Under the same conditions of Theorem 2, if Acn 6= ∅

(parametric), then pin →p 1; if Acn = ∅ (nonparametric), and we further

assume that the function R∗n : α 7→ Rn(α) + (λn − 2)σ2dn(α)/n (resp.

Rn : α 7→ Rn(α)) is regular and has a unique minimum α∗n (resp. αRn )

such that

max
α∈An

λndn(α)

nRn(α)
< c1,

dn(α∗n)

dn(αRn )
< c2 (26)

for all sufficiently large n for some fixed constants c1 > 0 and 0 < c2 < 1,

then pin →p 0.

3.7. Simulated validation

PI could provide a quick indication of how much parametricness the model

class exhibits. It is possible to construct hypothesis test of the model class

being parametric against its alternative by bootstrapping. We introduce

another way of assessing parametricness which may be more intuitive. If

computational cost is not an issue, data analyst may choose to generate

simulated data from the selected (and estimated) model, redo the same

model selection procedure as if the simulated data is the original data, and

check whether the same model can be consistently selected. This idea,

referred to as simulated validation, is motivated by the idea of guided

simulation or cross-examination used to compare models Li et al. (2000).
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In particular, suppose that BC selects model α̂bc, with estimated co-

efficients β̃α̂bc
and regression function f̃n = Xβ̃α̂bc

for brevity. If α̂bc is

equal to ᾱn = {1, . . . , dn}, we expand An by introducing another column

of Xn such that XT

nXn remains invertible. We generate data ỹn by

ỹn = f̃n + ε̃n

where ε̃n is a vector of independent Gaussian noises with zero mean and

σ̂2 variance that is estimated from model α̂bc. BC is applied to the data

and select a model α̂bc,s. Intuitively, if the model class is parametric, the

probability that α̂bc,s coincides with α̂bc is close to one. The expected

result from simulated validation is formalized by the following theoretical

result.

Theorem 3. Assume that the conditions of Theorem 2 hold (for the

original observations). Additionally, we assume that for any model α ∈

An that is not the largest model ᾱn, there exists a larger model α′ ∈ An
such that α ⊂ α′ and card(α′) = card(α) + 1. Then limn→∞ P(α̂bc =

α̂bc,s) = 1 if the model class is parametric, or lim supn→∞ P(α̂bc =

α̂bc,s) ≤ c for some constant c ∈ (0, 1) if the model class is nonpara-

metric.

The additional assumption made in Theorem 3 is to ensure that a

nonparametric model does not exhibit strong parametricness only due to

a lack of competing models (whose dimensions are comparable). It is a

mild assumption which holds, for instance, when Acn is a union of nested

models in the form of {i1}, {i1, i2}, . . ..

3.8. Discussion on the λn in BC

In Theorem 2, we have shown that for a wide variety of λn’s and para-

metric/nonparametric situations, BC enjoys the universal optimality that
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GIC cannot. It is worth noting that though BC and GICλn have λn in

their expressions, they lead to fundamentally different asymptotic con-

sequences. As we discussed in Subsection 3.3, asymptotic efficiency of

GICλn is only possible for either λn → ∞ or λ = 2, depending whether

the model class is parametric or not. For bounded λn that is not equal

to 2, GICλn is typically sub-optimal. On the other hand, with a wide

range of λn, BC can be optimal in both parametric or nonparametric

situations. It implies that for a fairly chosen λn data analysts do not

need to worry about whether the model class is well specified or not for

optimal estimation.

A natural concern is how to select λn in practice, since the universal

optimality of BC only holds under some conditions. From Theorem 2,

these conditions depend on how parametric or nonparametric the under-

lying data generating model is. One way of thinking about the issue is

to simply choose a deterministic sequence λn in advance (when the data

have not been observed). Then nature flips a coin, generating a set of

data in a way either parametric or nonparametric. And there will be a

range of parametric or nonparametric data generating models that admit

the optimal property of BC. In our simulation, we find that λn = n1/3

is a reasonable choice in various situations. Another way is to select a

data-driven λn using cross-validation, which will be discussed in Subsec-

tion B.4.

4. Use of Bridge criterion in high dimension (n < dn)

4.1. Penalized regression

In the previous sections, we have considered variable selection in high di-

mensional situations where models in An and their dimensions can vary

with n, but under n ≥ dn. Finding the sparse solution β of the high
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dimensional regression f(x) =
∑dn

j=1 βjxj where n < dn has also received

enormous attention in the past decades. The state-of-art approach is to

solve a penalized regression. Commonly used penalty functions include

least absolute shrinkage and selection operator (LASSO) and its exten-

tions (Tibshirani, 1996; Zhao and Yu, 2006; Zou, 2006), smoothly clipped

absolute deviation (SCAD) (Fan and Li, 2001), and minimax concave

penalty (MCP) (Zhang, 2010). Given that the model is parametric and

the true β is a sparse vector (with s nonzero entries, s < n), suitable

conditions for consistent variable selection/estimation or prediction error

bounds have been established for the above methods. More details can

be found in (Fan and Li, 2001; Zhang, 2010; Hastie et al., 2015).

Nevertheless, it is not clear whether the regularization parameters usu-

ally chosen by cross validation are optimal. The theoretical performance

of LASSO etc. in nonparametric situations is not fully understood. More-

over, even if the model is parametric, it can exhibit nonparametricness

when the sparsity s is large relative to n (as we shall see from the experi-

ments in Subsection B.3). Indeed, instability of these penalized regression

methods is well-known and the high uncertainty damages reproducibility

of the statistical findings (Meinshausen and Bühlmann, 2010; Yu, 2013;

Nan and Yang, 2014; Lim and Yu, 2016). Here we propose a more reli-

able selection approach that takes advantage of BC together with other

considerations.

4.2. New section method based on BC with variable ordering (BC-VO)

The idea is to utilize penalized regression methods to generate promising

models, obtain a stable marginal weighting of the variables, and form a

set of nested subsets. After we turn subset selection problem to order

selection of nested models, BC can be applied and is expected to work

well adaptively. We call this method BC with variable ordering in weight,
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Algorithm 1 BC-VO method

(a). Randomly split the data into two disjoint parts D1,D2;

(b). Apply LASSO, SCAD, and MCP to a data set D1a ⊆ D1, and obtain

the union of the three solution paths (denoted by Ân);

(c). Calculate the weight of each model in Ân (denoted by w = [wα]α∈Ân)

from a data set D1b ⊆ D1, using an appropriate weighting scheme (described

below);

(d). Calculate the marginal importance from w for each variable k ∈

{1, . . . , dn}, defined by uk =
∑
α∈Ân wα1k∈α for k ∈ ∪α∈Ânα, and uk = 0

otherwise, where 1k∈α is the 0-1 indicator;

(e). Collect the variables with nonzero uk’s, arrange them in descending

order of uk, denoted by i1, i2, . . ., and then form a nested model class An =

{{i1}, {i1, i2}, . . .} of size no larger than n;

(f). Apply BC to the second subset of data D2 and select the optimal one

from An. Apply least squares to the selected variables for future prediction.

or BC-VO. Details are summarized in Algorithm 1.

The above proposed method can be applied to regression variable se-

lection when there is no prescribed candidate models, or when dn > n.

Next, we explain more details of each step.

The prescreening step in (b) is important because for dn > n, even the

simple nested candidate set {αk : k = 1, . . . , dn} with αk = {1, . . . , k} vio-

lates the invertibility of Xn(α)TXn(α). The w in Step (c) is introduced to

measure the accuracies of the selected candidate models. To obtain w, we

use the adaptive regression by mixing (ARM) weighting scheme (Yang,

2001; Nan and Yang, 2014). A short review of ARM is included in Sec-

tion K.1 of the supplementary file. In step (b) and (c), we will assume

D1a and D1b to be disjoint for technical convenience. But we found from

various experimental studies that D1a = D1b = D1 works very well in

practice, and this is the default option developed in the current package
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‘bc’. Step (d) uses a weighting scheme to produces the ordering of vari-

ables. It was originally proposed by Ye et al. (2018) to measure variable

importance in high-dimensional regression. Step (e) forms a candidate

class for the application of BC.

Alternative solutions to penalized regression in Step (b) are greedy

algorithms, which make locally optimal choices in each iteration and

build up a nested Ân. Examples are the orthogonal matching pursuit

(OMP) (Chen et al., 1989; Pati et al., 1993), regularized orthogonal

matching pursuit (Needell and Vershynin, 2009), compressive sampling

matching pursuit (Needell and Tropp, 2009), and subspace pursuit (Dai

and Milenkovic, 2009). For example, the OMP algorithm is capable of

identifying αcn at iteration dn(αcn) with high probability, given that X is a

Gaussian or Bernoulli random matrix with n ∼ s2 log(dn/s) where s de-

notes the sparsity level (Davenport and Wakin, 2010). The convergence

rate of OMP, a consistent model selection procedure along its solution

path, and its oracle property were also studied by Ing and Lai (2011);

Ding et al. (2013).

A simpler version of the above selection procedure is to apply only

Steps (a)(b)(f) with An = Ân. Splitting the complete data into two

disjoint part (one for selecting the An and the other for α) is necessary,

as we shall explain in the next remark. The idea of forming a candidate

set using the solution paths of LASSO, SCAD, and MCP was also used

to design a variable selection diagnostics measures for high dimensional

regression (Nan and Yang, 2014).

From synthetic data experiments, we have observed that the simpler

procedure without (c)-(e) works reasonably well in practice, but there

can be uncertainty arising from the choice of splitting ratio. Another

issue is that the final result depends the solution path returned from

LASSO etc., which can be sensitive to data size (Nan and Yang, 2014)
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(especially when the size is small). Since variable selection is also of

interest (instead of pure prediction), we propose the additional Steps (c)-

(e) to alleviate the above mentioned issues. These steps first assess the

accuracies of the selected candidate models, and then stabilize variable

selection by assigning importance weights to variables and re-formulating

the candidate set.

Our experiments (not reported due to space limitation) show that the

performance of the procedure (a)-(f) is not sensitive to the splitting ratio

in (a). In the last step of ARM, e−Cα is introduced as a prior weight to

accommodate high-dimensional settings (as found in our experiments).

We refer to (Nan and Yang, 2014) for an information theoretical inter-

pretation of Cα.

We note that the data splitting used in Steps (b) and (f) are necessary

for consistency, because otherwise the procedures of candidate prescreen-

ing and model selection are not independent, invalidating the indepen-

dence assumption of e1, . . . , en. Moreover, the arguments of asymptotic

efficiency in the nonparametric scenario can be directly applied to the

second subset of data. But it is not clear how to achieve asymptotic

efficiency for the complete design matrix.

In the high-dimensional setting, we would like to study the prediction

consistency and efficiency in both parametric and nonparametric regres-

sion models, just like their low-dimensional counterparts. However, we

have not found a good way of formalizing the prediction efficiency for

high-dimensional models. We leave it as an interesting future work. In

Section K of the supplementary file, we only provide theoretical study

for parametric high-dimensional regression models, in the sense that the

regression function is a linear function of few significant variables.
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Suppose that the data generating model is

yn = Xnβ∗ + en (27)

where β∗ has s nonzero entries, s being a fixed positive integer. Accord-

ingly, there exists a sparse subset αc ∈ {1, . . . , dn} of cardinality s that

represents the smallest correct model. The model αc is uniquely identifi-

able under some assumptions to be made in our theorem. We note that

the assumption of s being fixed was not needed in our low-dimensional

settings in the previous sections. We shall prove that the BC-VO esti-

mate from step (f) exhibits “oracle property” (Fan and Li, 2001) which

also holds for SCAD (Fan and Li, 2001), MCP (Zhang, 2010), Adaptive

LASSO (Zou, 2006) under suitable assumptions. This property means

that as the sample size and model dimension go to infinity, all and only

the true variables will be identified with probability going to one, the esti-

mated parameters converge in probability to the true parameters, and the

usual asymptotic normality holds as if all the irrelevant variables have al-

ready been excluded. This property also holds for SCAD, MCP, Adaptive

LASSO (Fan and Li, 2001; Zhang, 2010; Zou, 2006).

5. Conclusion

In this paper, we introduced a new variable selection criterion that achieves

asymptotic loss and risk efficiency in both parametric and nonparametric

situations. The proposed method is theoretically intriguing and practi-

cally useful, as it bridges the gap between two typical classes of model

selection methods. Its intrinsic adaptivity to data is mainly due to the

harmonic penalty λn(1 + 2−1 + · · · ). In practice when no prior knowledge

about the model specification or data generating process is available, the

proposed method is more flexible and reliable than the two typical classes

of criteria in selecting the most appropriate model. We also proposed a
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procedure for regression variable selection where the candidate set is not

prescribed, or where the number of candidate variables is large relative

to the sample size.

We conclude this paper by providing several ideas for further research.

Firstly, since the proposed criterion admits a wide range of choices of λn,

it may lead to a better performance by choosing data-driven λn in a more

principled manner. Secondly, the theoretical results in this paper are for

fixed design regressions, and their extension to random design analysis

would be interesting. Thirdly, adaptive optimal selection of variables in

very high dimensional settings has yet to be systematically studied. For

instance, it is theoretically unclear whether the proposed procedure in

Section 4 can achieve universal optimality as its low dimensional coun-

terpart. Last but not least, it would be appealing to have Bayesian coun-

terpart of the new criterion.

6. Supplementary Material

Detailed proofs and explanations of each assumption are elaborated in

the supplementary file.
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Web-based supporting materials for
“Optimal variable selection in regression models”

by Jie Ding, Vahid Tarokh, Yuhong Yang

A. Notation

We use → and →p to denote respectively deterministic convergence and

in probability convergence, as the sample size n→∞. We may drop the

n→∞ whenever there is no ambiguity. Let eigmin(·) and eigmax(·) denote

the smallest and largest eigenvalues of a symmetric matrix. Let card(A),

bac, and Hn =
∑n

k=1 k
−1 denote respectively the cardinality of a finite

set, the largest integer that is no larger than a, and the n-th harmonic

number. We use A \ B to represent the set of elements in set A but not

in set B. For a positive semidefinite matrix P , let ‖·‖P denote the norm

defined by ‖e‖2P
∆
= eTPe. It reduces to the Euclidean norm ‖·‖ when P

is an identity matrix.
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B. Experimental studies

In this section, we present experimental results to demonstrate the theo-

retical results and the advantages of Bridge criterion on various synthetic

data. The main purpose of the experiments is to demonstrate that the

proposed criterion achieves asymptotic efficiency in both parametric and

nonparametric settings (which is unknown beforehand). We also numeri-

cally study the performance in high dimensional regression models where

dn > n.

In Subsections B.1 and B.2, the model classes under consideration are

respectively polynomial regression and spline regression. In both cases,

the candidate set is naturally chosen to be {{1}, . . . , {1, . . . , d}, . . .}, with

d denoting either the degree of polynomial or number of basis splines

being used. The purpose is to show that as sample size increases, BC

behaves closer to the better of GIC2-type or GICλn-type criteria. In

Subsection B.3, we extend the numerical study of BC to high dimensional

regressions where n < dn, by using the procedure proposed in Section 4.

Finally, in Subsection 3.8, we briefly discuss the choice of λn in practice.

In some of the tasks, we compare GIC2, CV1, BC, GICλn , CVd in

terms of the loss, risk, and selected dimension. The λn in GICλn is chosen

to be log n so that GICλn is almost BIC. The d in CVd is chosen to

meet (4) with λn being log n, so that CVd is also comparable to BIC.

In applying CVd procedure, for each candidate model, n − d randomly

chosen observations are used for training and an average predication error

is computed using the remaining d observations; then the prediction error

is further averaged over many independent replications, based on which

the optimal candidate is selected.

Throughout the experiments, the λn in BC is chosen to be λn = n1/3,

except in Subsection B.4 an adaptive choice of λn is compared. Better
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results may be obtained by fine tuning the optimal λn for each data

generating scheme. But we found from our experiments that λn = n1/3

gives a reasonable baseline level of performance without the need to do

any further tuning. Let N (µ, σ2) denote the Gaussian distribution with

mean µ and variance σ2. The noises ei’s are generated from i.i.d. N (0, σ2)

with σ2 = 1 unless otherwise stated. The signal to noise ratio (SNR) is

defined by ‖fn‖2/(nσ2). In a parametric model class An, for each α ∈ An
we define u+

n (α) = card(α\αcn), u−n (α) = card(αcn\α), which represent

the extent of overfitting and underfitting, respectively. In the sequel, we

summarize the averages of u+
n (α̂n), u−n (α̂n) in parametric settings and

the averages of dn(α̂n) in nonparametric settings, with α̂n denoting the

models selected by each criterion. We also show the values of two different

PI’s, one is the pin proposed in this paper, and the other is pi
(2)
n proposed

by Liu and Yang (2011), defined in Section 2. Each experiment will

be based on 1000 independent replications, each of which consists of n

independent data (yi,xi), i = 1, . . . , n. Each mean estimate in the tables

is followed by its standard error in the parenthesis.

B.1. Polynomial regression

Suppose that the regression function is f(x) =
∑∞

j=0 βj+1x
j (β ∈ `2, 0 ≤

x < 1), and y1, . . . , yn are observed at x = ia/n, i = 0, . . . , n− 1 (0 < a ≤

1). The (i, j)th (1 ≤ i, j ≤ dn) element of Xn is {(i − 1)a/n}j−1. The

asymptotic property of Xn has been studied in (Shibata, 1981, Example

3.1). We generated data from model f(x) = 1 + 5x2 (denoted by M1),

and another model f(x) = log(1 + 46x) (denoted byM2). Clearly, under

the specified (polynomial regression) model class,M1 is parametric while

M2 is nonparametric. The SNRs are 9.3 in both cases. The candidate

models are chosen be An = {αk, k = 1, . . . , dn} with dn = bn1/3c, where

αk corresponds to f(x) =
∑k−1

j=0 βj+1x
j . The dimension of model αk is k.
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We summarize the performances of BC (employing the default λn = n1/3),

GIC2, CV1, GICλn , and CVd for each n = 100, 500, 1000 in Table 1 and

Table 2. The values of Ln(α̂n), Rn(α̂n) are analytically calculated using

(12). In Table 1, GICλn and CVd (the “first class”) perform better than

GIC2 and CV1 (the “second class”) for large n (500, 1000), while the other

way around for small n (100). That is because when n is small relative

to dn(αcn), it falls into the practically nonparametric regime. In Table 2,

the second class outperform the first class for each n. Nevertheless, in all

cases the performance of BC is close to the better of the two classes of

criteria.

B.2. Spline fitting

In this subsection, we use B-splines to approximate an unknown scalar

function f(x), given samples of x and its noisy observations y = f(x) + ε.

Similar technique may be extended to multivariate x by using multidi-

mensional splines or assuming additive nonlinear models (Stone, 1985;

Huang et al., 2010). The specified model class is f(x) =
∑k

j=1 βjB`,j(x),

where B`,j(x) are B-spline functions of order ` with knot sequence t0 =

· · · = t`−1 = 0, tk = · · · = tk+`−1 = 1, t`, . . . , tk−1 being internal knots

equally spaced in [0, 1]. The corresponding design matrix Xn of size n×dn
is thus defined by Xi,j = B`,j(xi), i = 1, . . . , n. It is known that Xn is of

full rank given that supx∈[0,1] |Qn(x)−Q(x)| = o(k−1), where Qn(x) is the

empirical distribution function of {xi}ni=1, and Q(x) is some distribution

with a positive continuous density (Zhou et al., 1998, Lemma 6.2). Note

that by Donsker’s theorem, the above condition holds with probability

close to one for xi’s being generated from Q(x) and k = o(n0.5).

We use quadratic splines (` = 3) to fit synthetic data that are gen-

erated from two models, with xi = i/n, i = 1, . . . , n. The parametric

model (denoted by M3) uses f(x) = −40x2 + 40x− 4. The nonparamet-
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ric model (denoted by M4) uses f(x) = log(1 + 100x) for x < 0.7 and

log(71){1 + 100(x − 0.7)4} for x ≥ 0.7. The SNRs are 16 in both cases.

The candidate models are chosen to be An = {αk, k = 1, . . . , dn} with

dn = bn1/3c, where αk corresponds to the model of k spline basis. The

dimension of αk is defined to be k. The results are summarized in Table 3

and Table 4. In Table 3, GICλn and CVd perform better than GIC2 and

CV1 for each n. As n increases, BC behaves closer to the first class, and

pin is closer to one. In Table 4, however, the second class perform better,

and so does BC.

B.3. Variable selection in high dimensional models with n < dn

In this numerical study, we consider the variable selection for f(x) =∑dn
j=1 βjxj with dn > n. We adopt the procedure BC-VO proposed in

Section 4 that casts the high dimension problem as a low dimensional one

for BC. Since random design is more commonly used than fixed design

in high dimensional problems, it is natural to evaluate the predictive

performance based on the following risk. Rn(α̂n) = E(〈x̃,β − β̂(α̂n)〉)2

where α̂n is the selected model by a criterion, and the expectation is

taken over β̂(α̂n) and covariate x̃ that is independent of β̂(α̂n). We note

that our present theoretical analysis for asymptotic efficiency cannot be

directly applied to the random design regression, but the consistency

arguments (see Section 4) are still applicable.

For each synthetic data in the sequel, covariates (rows of Xn) are in-

dependently generated. We numerically compute the mean and standard

error of Rn(α̂n) in the following way. In each replication, suppose that

β̂(α̂n) is the estimated coefficients by a criterion, then we compute the

average of 〈x̃i,β − β̂(α̂n)〉)2 for randomly generated x̃1, . . . , x̃1000. We

split the data with ratio r = 0.7 when applying step (a) of the procedure

in Section 4. In some experiments not reported here, we also chose dif-
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ferent r and the results in Table 5 did not differ much. We use the R

package NCVREG (Breheny and Lee, 2011) to perform LASSO, SCAD,

and MCP model selections, and they are applied to the complete dataset

(for a fair comparison with other criteria). The default 10-fold cross-

validation has been used to tune the regularization parameters. Let σ

denote the standard deviation of the zero mean Gaussian noise added to

the correct linear model. We consider the three models described below,

each with n = 150, 450, dn = 4n/3, σ = 1.5, 4.5.

Model M5. In the first model, β = [10, 5, 5, 2.5, 2.5, 1.25, 1.25, 0.675,

0.675, 0.3125, 0.3125, 0, . . . , 0] (with dn − 11 zeros), and the dn covariates

are i.i.d. N (0, 1). The SNR is around 73 for σ = 1.5 and 6.5 for σ = 5.

This model was used by Nan and Yang (2014).

Model M6. In the second model, β = [2.5, . . . , 2.5, 1.5, . . . , 1.5, 0.5,

. . . , 0.5, . . . , 0, . . . , 0] (where 2.5, 1.5, 0.5 are each repeated five times,

followed by dn − 15 zeros). The first 15 covariates and the remaining

185 covariates are independent. The pairwise covariance between xi, xj

is 0.5|i−j| for 1 ≤ i ≤ j ≤ 15, and xi’s are i.i.d. N (0, 1) for 16 ≤ i ≤ 200.

The SNR is around 52 for σ = 1.5 and 4.5 for σ = 5. This model was

used by Huang et al. (2008).

Model M7. In the third model, β = [10.5, 0, . . . , 0] (with dn − 1

zeros), and the dn covariates are i.i.d. N (0, 1). The SNR is around 50 for

σ = 1.5 and 4.3 for σ = 5.

Model M8. In the fourth model, β = [10, 10/21.5, . . . , 10/p1.5] (with

no zeros), and the dn covariates are i.i.d. N (0, 1). The SNR is around 53

for σ = 1.5 and 4.8 for σ = 5. This model appears to be nonparametric

but can exhibit strong parametricness as sample size increases.

We first consider σ = 1.5. Table 5 summarizes the results in terms of

Rn(α̂n), u+
n (α̂n), u−n (α̂n), and the smallest risk in each setting is bolded.

For the four models, though the data are truly generated from linear mod-
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els, they exhibit different practical parametricness. In M5 and M6, BC-

VO substantially outperforms the state-of-art penalized methods LASSO,

SCAD, and MCP, especially for larger n. Note that compared with BC,

both SCAD and MCP suffer less underfitting as well as overfitting, but

their risks are larger. To see the reason, we decompose the risk into bias

and variance terms in the following way:

E(〈x̃,β − β̂〉)2 = Ex̃(〈x̃,β − Eβ̂〉)2 + Ex̃V ar{x̃Tβ̂}

where β̂ denotes the estimated coefficient vector, and inside Ex̃ is the

expectation/variance with respect to β̂ (given x̃). Our experiments (not

reported due to space limitation) show that the larger risks of of SCAD

and MCP are due to their larger bias (than BC) in estimating the coeffi-

cients.

For larger n, the modelM5 orM6 exhibits more parametricness (since

the minimal true model does not vary with n), and thus pin should become

larger. This is consistent with the PI’s in Table 5. As we discussed before,

a correct model with larger SNR and smaller dimension tends to be more

“parametric”. This seems also true in the high dimensional setting. To

further illustrate that point, inM7, we reduce the dimension of the data

generating model while keeping the SNR close to M6. The value of pin

is close to one, and SCAD, MCP, BC-VO perform similarly for both n.

Though LASSO does not exhibit much overfitting, it gives a large risk due

to biased estimation of the `1-penalization. In contrast toM7, modelM8

is a nonparametric setting. As sample size becomes larger, the SNR is

saturated and the parametricness becomes more evident. In these four

experiments, the performance of BC-VO is much better than the state-

of-art penalized methods in more practically nonparametric models or

comparable to them in more parametric models.

We then consider σ = 5 to further study low SNR situations. We re-
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peat all the above experiments and show the results in Table 7. From the

simulation results, there is no method dominantly better than the others.

BC-VO seems to underfit for very low SNR. We found that its perfor-

mance can be improved by choosing smaller λn. For the tabulated results,

we have used the same option (namely n1/3) to avoid cherry-picking for

our own method. An SNR-adaptive choice of λn is an interesting future

work. Overall, it seems that the performance of BC-VO is stable and

comparable with the best result in almost all situations.

All the above experimental results suggest that BC-VO is a promising

new method for high dimensional regression.

B.4. On the choice of λn in BC

In Section 3.8, we have discussed that BC can be universally optimal for a

wide variety of λn’s. In practical situations where the theoretical assump-

tions are not easily verifiable, we here propose a data-driven selection of

λn (referred to as BC-Dat). The procedure proceeds as follows:

1) resample a dataset of size n (with replacement) D1 from the original

dataset D to which BC should be applied,

2) for a grid of λn (e.g. a geometric progression between (1, n) with

common ratio 1.5 in our simulation), run BC, and apply the inference

results to D to obtain a fitting error ε1,

3) repeat steps (1)-(2) several times (e.g. 5 times in our simulation),

and select the λn that offers the smallest ε1 + · · ·+ ε5.

In the above experiments, we also compare BC-Dat and BC, and sum-

marize their risks Rn(α̂n) for models M1-M8 (with σ = 1.5) in Table 7.

The results indicate that the performances of BC-Dat and BC are com-

parable, and that BC is not very sensitive to the choice of λn. We leave

a more principled data-driven selection of λn (with provable guarantees)

as an interesting future work.
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GIC2 CV1 BC GICλn CVd

n = 100

Ln(α̂n) 35.21 (0.91) 35.41 (0.93) 36.16 (1.01) 37.67 (1.25) 39.35 (1.34)

Rn(α̂n) 32.27 (0.34) 32.56 (0.38) 34.17 (0.63) 38.23 (0.98) 40.47 (1.11)

u+n (α̂n) 0.14 (0.01) 0.15 (0.01) 0.12 (0.01) 0.03 (0.01) 0.02 (0.00)

u−n (α̂n) 0.01 (0.00) 0.01 (0.00) 0.02 (0.00) 0.06 (0.01) 0.08 (0.01)

pin 0.89 (0.01)

pi
(2)
n 3.16 (0.16)

n = 500

Ln(α̂n) 8.61 (0.25) 8.60 (0.24) 6.73 (0.20) 6.10 (0.17) 6.04 (0.16)

Rn(α̂n) 6.92 (0.06) 6.92 (0.06) 6.22 (0.03) 6.02 (0.01) 6.02 (0.01)

u+n (α̂n) 0.46 (0.03) 0.46 (0.03) 0.11 (0.02) 0.01 (0.00) 0.01 (0.00)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 0.95 (0.01)

pi
(2)
n 5.20 (0.04)

n = 1000

Ln(α̂n) 5.08 (0.15) 5.13 (0.15) 3.49 (0.10) 3.25 (0.08) 3.25 (0.08)

Rn(α̂n) 3.69 (0.04) 3.72 (0.04) 3.07 (0.01) 3.01 (0.00) 3.01 (0.00)

u+n (α̂n) 0.69 (0.04) 0.72 (0.04) 0.07 (0.01) 0.01 (0.00) 0.01 (0.00)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 0.98 (0.01)

pi
(2)
n 8.75 (0.06)

Table 1: Performance of each method for polynomial regression in the parametric model

M1 (values corresponding to Ln(α̂n) and Rn(α̂n) were rescaled by 1000)
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GIC2 CV1 BC GICλn CVd

n = 100

Ln(α̂n) 58.63 (0.97) 58.80 (0.99) 62.81 (1.10) 73.79 (1.21) 78.58 (1.28)

Rn(α̂n) 59.22 (0.54) 59.38 (0.56) 63.18 (0.74) 72.96 (0.94) 77.64 (1.01)

dn(α̂n) 3.47 (0.02) 3.47 (0.02) 3.36 (0.02) 3.03 (0.02) 2.92 (0.02)

pin 0.70 (0.01)

pi
(2)
n 2.53 (0.07)

n = 500

Ln(α̂n) 15.25 (0.22) 15.21 (0.22) 16.91 (0.27) 20.58 (0.29) 21.11 (0.31)

Rn(α̂n) 14.59 (0.08) 14.56 (0.08) 16.26 (0.16) 20.21 (0.24) 20.85 (0.25)

dn(α̂n) 5.26 (0.03) 5.26 (0.03) 4.82 (0.04) 3.97 (0.02) 3.89 (0.02)

pin 0.62 (0.02)

pi
(2)
n 1.64 (0.02)

n = 1000

Ln(α̂n) 8.66 (0.13) 8.62 (0.14) 9.56 (0.14) 11.53 (0.16) 11.65 (0.17)

Rn(α̂n) 8.30 (0.05) 8.28 (0.05) 9.27 (0.09) 11.43 (0.13) 11.57 (0.14)

dn(α̂n) 6.07 (0.04) 6.06 (0.04) 5.34 (0.04) 4.43 (0.02) 4.40 (0.02)

pin 0.56(0.02)

pi
(2)
n 1.42 (0.02)

Table 2: Performance of each method for polynomial regression in the nonparametric model

M2 (values corresponding to Ln(α̂n) and Rn(α̂n) were rescaled by 1000)
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GIC2 CV1 BC GICλn CVd

n = 100

Ln(α̂n) 36.14 (0.89) 36.10 (0.88) 35.65 (0.88) 32.43 (0.85) 32.31 (0.83)

Rn(α̂n) 31.63 (0.12) 31.63 (0.12) 31.41 (0.11) 30.36 (0.06) 30.44 (0.06)

u+n (α̂n) 0.16 (0.01) 0.16 (0.01) 0.14 (0.01) 0.03 (0.01) 0.04 (0.01)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 0.90 (0.01)

pi
(2)
n 96.44 (0.58)

n = 500

Ln(α̂n) 9.52 (0.26) 9.48 (0.25) 7.30 (0.22) 6.40 (0.17) 6.38 (0.17)

Rn(α̂n) 7.16 (0.07) 7.14 (0.07) 6.26 (0.03) 6.03 (0.01) 6.03 (0.01)

dn(α̂n) 1.58 (0.03) 1.57 (0.03) 1.13 (0.02) 1.02 (0.00) 1.02 (0.00)

u+n (α̂n) 0.58 (0.03) 0.57 (0.03) 0.13 (0.02) 0.02 (0.00) 0.01 (0.00)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 0.94 (0.01)

pi
(2)
n 488.03 (2.42)

n = 1000

Ln(α̂n) 4.80 (0.14) 4.76 (0.14) 3.26 (0.10) 3.02 (0.08) 3.02 (0.08)

Rn(α̂n) 3.63 (0.04) 3.61 (0.04) 3.07 (0.01) 3.01 (0.00) 3.01 (0.00)

dn(α̂n) 3.62 (0.04) 3.65 (0.04) 3.07 (0.01) 3.01 (0.00) 3.01 (0.00)

u+n (α̂n) 0.63 (0.04) 0.61 (0.04) 0.07 (0.01) 0.01 (0.00) 0.01 (0.00)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 0.97 (0.01)

pi
(2)
n 987.01 (3.58)

Table 3: Performance of each method for spline fitting in the parametric modelM3 (values

corresponding to Ln(α̂n) and Rn(α̂n) were rescaled by 1000)
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GIC2 CV1 BC GICλn CVd

n = 100

Ln(α̂n) 11.56 (0.10) 11.57 (0.10) 11.56 (0.10) 12.09 (0.14) 12.62 (0.15)

Rn(α̂n) 11.61 (0.05) 11.62 (0.05) 11.61 (0.05) 12.26 (0.11) 12.77 (0.14)

dn(α̂n) 1.99 (0.00) 1.99 (0.00) 1.99 (0.00) 1.94 (0.01) 1.91 (0.01)

pin 0.96 (0.01)

pi
(2)
n 6.77 (0.68)

n = 500

Ln(α̂n) 2.10 (0.01) 2.10 (0.01) 2.13 (0.03) 2.61 (0.04) 2.69 (0.04)

Rn(α̂n) 2.10 (0.01) 2.10 (0.01) 2.12 (0.01) 2.59 (0.03) 2.69 (0.03)

dn(α̂n) 4.79 (0.01) 4.79 (0.01) 4.76 (0.01) 4.22 (0.02) 4.15 (0.02)

pin 0.48 (0.02)

pi
(2)
n 1.23 (0.01)

n = 1000

Ln(α̂n) 1.22 (0.01) 1.22 (0.01) 1.24 (0.01) 1.52 (0.02) 1.53 (0.02)

Rn(α̂n) 1.19 (0.01) 1.19 (0.01) 1.20 (0.01) 1.49 (0.01) 1.50 (0.01)

dn(α̂n) 5.97 (0.03) 5.98 (0.03) 5.85 (0.03) 4.74 (0.02) 4.73 (0.02)

pin 0.30 (0.01)

pi
(2)
n 1.25 (0.01)

Table 4: Performance of each method for spline fitting in the nonparametric model M4

(values corresponding to Ln(α̂n) and Rn(α̂n) were rescaled by 100)
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LASSO SCAD MCP BC

M5

n = 150

Rn(α̂n) 2.99 (0.02) 1.35 (0.02) 0.94 (0.01) 0.66 (0.01)

u+n (α̂n) 0.85 (0.03) 0.12 (0.01) 0.05 (0.01) 0.73 (0.04)

u−n (α̂n) 2.19 (0.02) 2.22 (0.02) 2.22 (0.02) 2.39 (0.03)

pin 0.64 (0.02)

pi
(2)
n 1.44 (0.02)

n = 450

Rn(α̂n) 2.61 (0.01) 1.08 (0.01) 0.69 (0.01) 0.28 (0.01)

u+n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00)

u−n (α̂n) 2.03 (0.01) 2.05 (0.01) 2.03 (0.01) 1.98 (0.01)

pin 0.96 (0.01)

pi
(2)
n 1.56 (0.01)

M6

n = 150

Rn(α̂n) 1.21 (0.01) 1.01 (0.02) 0.80 (0.01) 0.67 (0.01)

u+n (α̂n) 2.00 (0.06) 1.28 (0.05) 0.88 (0.04) 0.66 (0.03)

u−n (α̂n) 0.22 (0.01) 1.12 (0.03) 2.12 (0.02) 1.74 (0.03)

pin 0.62 (0.02)

pi
(2)
n 1.15 (0.01)

n = 450

Rn(α̂n) 0.80 (0.01) 0.47 (0.01) 0.46 (0.01) 0.10 (0.00)

u+n (α̂n) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.10 (0.01)

u−n (α̂n) 0.00 (0.00) 0.31 (0.02) 1.57 (0.02) 0.10 (0.01)

pin 0.75 (0.01)

pi
(2)
n 1.29 (0.01)

M7

n = 150

Rn(α̂n) 3.14 (0.01) 0.37 (0.00) 0.37 (0.00) 0.39 (0.03)

u+n (α̂n) 0.17 (0.04) 0.08 (0.03) 0.08 (0.03) 0.21 (0.05)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 1.00 (0.00)

pi
(2)
n 44.26 (0.18)

n = 450

Rn(α̂n) 2.78 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.03)

u+n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 1.00 (0.00)

pi
(2)
n 135.00 (0.00)

M8

n = 150

Rn(α̂n) 2.92 (0.02) 2.03 (0.01) 1.64 (0.01) 1.45 (0.01)

u+n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

u−n (α̂n) 191.92 (0.05) 192.58 (0.04) 192.79 (0.04) 192.33 (0.07)

pin 0.57 (0.02)

pi
(2)
n 1.52 (0.02)

n = 450

Rn(α̂n) 2.71 (0.01) 1.84 (0.01) 1.47 (0.01) 0.97 (0.01)

u+n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

u−n (α̂n) 593.01 (0.03) 593.04 (0.03) 593.08 (0.02) 592.79 (0.03)

pin 0.87 (0.01)

pi
(2)
n 1.43 (0.01)

Table 5: Performance of each method for high dimensional models M5–M8 with σ = 1.5

(values for Rn(α̂n), u+
n (α̂n), u−n (α̂n) in M7 were rescaled by 10)
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LASSO SCAD MCP BC

M5

n = 150

Rn(α̂n) 8.04 (0.09) 5.21 (0.08) 5.24 (0.08) 6.65 (0.10)

u+n (α̂n) 20.48 (0.27) 12.66 (0.22) 4.78 (0.13) 2.01 (0.09)

u−n (α̂n) 3.12 (0.03) 3.41 (0.03) 4.11 (0.03) 5.28 (0.03)

pin 0.52 (0.02)

pi
(2)
n 1.46 (1.26)

n = 450

Rn(α̂n) 3.63 (0.05) 1.99 (0.04) 1.84 (0.04) 2.41 (0.05)

u+n (α̂n) 19.38 (0.21) 13.78 (0.22) 6.67 (0.18) 2.23 (0.12)

u−n (α̂n) 2.23 (0.03) 2.34 (0.03) 2.73 (0.03) 3.69 (0.03)

pin 0.41 (0.02)

pi
(2)
n 1.43 (0.02)

M6

n = 150

Rn(α̂n) 7.15 (0.09) 11.35 (0.13) 11.53 (0.14) 9.25 (0.14)

u+n (α̂n) 18.36 (0.35) 19.10 (0.25) 8.72 (0.15) 2.62 (0.08)

u−n (α̂n) 2.31 (0.03) 4.24 (0.04) 5.86 (0.04) 5.59 (0.06)

pin 0.37 (0.02)

pi
(2)
n 1.30 (0.01)

n = 450

Rn(α̂n) 2.75 (0.05) 3.13 (0.05) 2.91 (0.05) 2.42 (0.05)

u+n (α̂n) 25.55 (0.48) 30.84 (0.50) 12.10 (0.26) 2.18 (0.09)

u−n (α̂n) 0.93 (0.03) 1.87 (0.03) 3.05 (0.03) 2.92 (0.04)

pin 0.29 (0.01)

pi
(2)
n 1.20 (0.01)

M7

n = 150

Rn(α̂n) 1.74 (0.05) 0.56 (0.04) 0.65 (0.05) 1.25 (0.08)

u+n (α̂n) 7.12 (0.25) 2.77 (0.17) 1.46 (0.10) 1.39 (0.10)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 0.82 (0.01)

pi
(2)
n 40.92 (0.40)

n = 450

Rn(α̂n) 0.66 (0.04) 0.21 (0.04) 0.23 (0.04) 0.31 (0.04)

u+n (α̂n) 6.25 (0.20) 2.87 (0.17) 1.51 (0.11) 0.54 (0.07)

u−n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pin 0.94 (0.01)

pi
(2)
n 130.55 (0.76)

M8

n = 150

Rn(α̂n) 6.65 (0.06) 5.18 (0.05) 5.23 (0.06) 6.74 (0.08)

u+n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

u−n (α̂n) 178.19 (0.31) 184.23 (0.25) 191.12 (0.15) 194.45 (0.13)

pin 0.55 (0.02)

pi
(2)
n 1.49 (0.89)

n = 450

Rn(α̂n) 3.44 (0.02) 2.54 (0.02) 2.48 (0.02) 3.18 (0.03)

u+n (α̂n) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

u−n (α̂n) 574.65 (0.23) 578.32 (0.25) 586.17 (0.22) 592.72 (0.15)

pin 0.41 (0.14)

pi
(2)
n 1.69 (0.14)

Table 6: Performance of each method for high dimensional models M5–M8 with σ = 5

(values for Rn(α̂n), u+
n (α̂n), u−n (α̂n) in M7 were rescaled by 10)
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n = 100 n = 500 n = 1000

BC BC-Dat BC BC-Dat BC BC-Dat

M1 34.11 (0.61) 35.49 (0.72) 6.20 (0.03) 6.87 (0.06) 3.07 (0.01) 3.49 (0.04)

M2 63.14 (0.74) 61.14 (0.59) 16.24 (0.16) 15.98 (0.15) 9.26 (0.09) 8.87 (0.08)

M3 31.39 (0.11) 31.42 (0.11) 6.26 (0.03) 6.81 (0.06) 3.07 (0.01) 3.57 (0.04)

M4 11.60 (0.05) 11.71 (0.06) 2.13 (0.01) 2.15 (0.02) 1.21 (0.01) 1.24 (0.01)

Table 7: Performance of BC and BC-Dat for variable selection in modelsM1-M4, and their

performance for high dimensional modelsM5-M8 is equivalent (which is therefore omitted)



Variable selection 49

C. Proof of Proposition 1

We first prove identity (14). It is clear that αcn minimizes Rn(α) over Acn.

For all sufficiently large n, condition (9) implies ARn ⊆ Acn, which further

implies that αRn = αcn and it is the unique element in ARn . Based on the

argument in (Li, 1987, p.970), condition (13) implies that

max
α∈An\Acn

|σ2dn(α)− eT

nHn(α)en|
nLn(α)

→p 0. (28)

It then follows from

|Rn(α)− Ln(α)|
Ln(α)

=
|σ2dn(α)− eT

nPn(α)en|
nLn(α)

that

Rn(α) = Ln(α){1 + op(1)} (29)

uniformly in α ∈ An \ Acn. In other words, maxα∈An\Acn |Rn(α)/Ln(α)−

1| →p 0. For any fixed constant ε > 0, Markov’s inequality gives

P{Ln(αcn) ≤ 2ε−1n−1 dn(α)σ2} ≥ 1− ε

2
. (30)

It follows from (29), (30) that

Ln(αcn)

Ln(α)
≤ 2ε−1n−1 dn(α)σ2

Rn(α){1 + op(1)}
≤ 4ε−1Rn(αcn)

Rn(α)
(31)

with probability at least 1 − ε for all sufficiently large n. We further

conclude from (9) that

P
{
Ln(αcn) < c min

α∈An\Acn
Ln(α)

}
→ 1 (32)

for any fixed constant 0 < c < 1. Moreover, due to (8), αcn minimizes

Ln(α) over Acn almost surely. Thus, P{ALn = {αLn}, αLn = αcn} → 1.

Next, we prove the equivalence of four concepts. From (14), L-consistency

andR-consistency are equivalent. SinceR-consistency (resp. L-consistency)
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implies asymptotic risk (resp. loss) efficiency, it remains to prove that

asymptotic risk (resp. loss) efficiency implies risk (resp. loss) consistency.

Because of assumption (9), asymptotic risk efficiency implies P{α̂n ∈

Acn} → 1. Considering the events within α̂n ∈ Acn, Rn(α̂n)/Rn(αcn)→p 1

becomes

dn(α̂n)

dn(αcn)
→p 1. (33)

Because dn(αcn) is upper bounded by a fixed constant (denoted by c0),

P{α̂n 6= αcn} ≤ P
(∣∣∣∣dn(α̂n)

dn(αcn)
− 1

∣∣∣∣ ≥ c−1
0

)
, (34)

and thus (33) implies P{α̂n = αcn} → 1. It follows from (14) that P{α̂n =

αRn } → 1.

Due to (32), asymptotic loss efficiency implies P{α̂n ∈ Acn} → 1. From

(14), it remains to prove that α̂n 6→p α
c
n implies Ln(α̂n)/Ln(αcn) 6→p 1.

In fact, if α̂n 6→p α
c
n, then it follows from (8), (15), and the boundness of

dn(αcn) that

Ln(α̂n)

Ln(αcn)
− 1 =

∑
α∈Acn\{αcn}

‖en‖2Pn(α)−Pn(αcn)

‖en‖2Pn(αcn)

1α̂n=α 6→p 0. (35)
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D. Proof of Proposition 2

Case 1). Recall Proposition 1 that αLn = αcn = αRn with probability

tending to one. To prove that GICλn is L-consistent and R-consistent,

it suffices to prove that P{α̂n = αcn} → 1. It has been proved under

condition (13) that (Shao, 1997, eq.(3.7))

Gn,λn(α) =
‖en‖2

n
+
λnσ̂

2
ndn(α)

n
− e

T

nPn(α)en
n

if α ∈ Acn

‖en‖2

n
+ Ln(α) + op{Ln(α)}+

(λnσ̂
2
n − 2σ2)dn(α)

n
if α ∈ An \ Acn

(36)

where the op is taken uniformly in α ∈ An \ Acn.

It follows from λn → ∞ and σ̂2
n →p σ

2 that P{λnσ̂2
n − 2σ2 > 0} → 1;

Moreover, from identities (29) and (36), it holds with probability tending

to one that

Gn,λn(αcn)− ‖en‖2/n
Gn,λn(α)− ‖en‖2/n

≤ λnRn(αcn)

Rn(α)
{1 + op(1)}

uniformly in α ∈ An \ Acn. It then follows from condition (16) that

P
{

max
α∈An\Acn

Gn,λn(αcn)− ‖en‖2/n
Gn,λn(α)− ‖en‖2/n

< q

}
→ 1 (37)

for some constant q ∈ (0, 1). Therefore,

P
{

min
α∈An\Acn

Gn,λn(α) > Gn,λn(αcn)

}
→ 1,

which implies P{α̂n ∈ Acn} → 1. It remains to prove that P{α̂n =

αcn, α̂n ∈ Acn} → 1, or equivalently,

P
{

min
α∈Acn\{αcn}

Gn,λn(α) > Gn,λn(αcn)

}
→ 1. (38)
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For any α ∈ Acn,

Gn,λn(α)−Gn,λn(αcn)

=
1

n
σ̂2
n{dn(α)− dn(αcn)}

(
λn −

‖en‖2Pn(α)−Pn(αcn)

σ̂2
n{dn(α)− dn(αcn)}

)
. (39)

From (Whittle, 1960, Thm.2),

E

(‖e‖2Pn(α)−Pn(αcn)

dn(α)− dn(αcn)
− σ2

)2m2

≤ C{dn(α)− dn(αcn)}−m2 . (40)

By Markov’s inequality, we obtain

P
{‖e‖2Pn(α)−Pn(αcn)

dn(α)− dn(αcn)
− σ2 > δ

}
≤ Cδ−2m2{dn(α)− dn(αcn)}−m2 (41)

for any constant δ > 0. This together with (17) implies that

max
α∈Acn,α 6=αcn

‖e‖2Pn(α)−Pn(αcn)

dn(α)− dn(αcn)
= Op(1). (42)

Applying condition (42) and λn → ∞ to identity (39), we conclude that

(38) holds.

Case 2). It has been proved under conditions σ̂2
n →p σ

2 and (13)

that (Shao, 1997, eq.(3.2))

Gn,2(α) =


‖en‖2

n
+

2σ̂2
ndn(α)

n
− e

T

nPn(α)en
n

if α ∈ Acn

‖en‖2

n
+ Ln(α) + op{Ln(α)} if α ∈ An \ Acn

(43)

where the op is taken uniformly in α ∈ An \Acn (as before). If card(Acn) =

∅, it is clear that minimizing Gn,2(α) guarantees asymptotic loss effi-

ciency. If card(Acn) = 1, then conditions (9), (29), and (43) imply both

P{Gn,2(α) > Gn,2(αcn)} → 1 and Ln(αcn) = op{Ln(α)} uniformly in

α ∈ An \ Acn. Thus, the selected model is asymptotically loss efficient.

The asymptotic risk efficiency can be similarly proved using (29).
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E. Proof of Theorem 1

A more general result is summarized in Proposition 4. To prove (21), we

only need to verify the assumptions there. Assumption ii implies assump-

tion ii in Proposition 4. Assumption iv trivially implies assumption iv(c)

in Proposition 4. Assumptions v and (18) and the nested model imply

assumption iv(e) in Proposition 4. Assumption (20) and the model being

nested imply assumption iv(f)(g) in Proposition 4.

Moreover, in the particular case of ∆n(α) = c d(α)−γ , it is sufficient

to simply choose n′ = n · (1 + n−ζ) with any ζ ∈ (1
2 ,

1
γ+1).

Proposition 4. Assume that the noises e1, . . . , en are i.i.d. Gaussian

with zero mean and variance σ2. Assume that Acn = ∅. Suppose that for

all sufficiently large n

(i) ∆n(ᾱn)→ 0, dn/n→ 0;

(ii) Condition (13) holds;

(iii) card(ARn ) < C for some fixed constant C;

(iv) There exist n′ (n′ > n) that is a function of n and satisfies

(a) n−1/2(n− n′)→ 0,

(b) n−1/2{d(αRn )− d(αRn′)} → 0,

(c) n1/2{∆n(αRn )−∆n′(αRn )} → 0,

(d) n{∆n(αRn )−∆n(αRn′)} → ∞,

(e)

lim sup
n→∞

n{∆n(αRn )−∆n(αRn′)} − n′{∆n′(αRn )−∆n′(αRn′)}√
n{∆n(αRn )−∆n(αRn′)}

< 2
√
e,

(f) ARn ∩ ARn′ = ∅,
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(g) ARn ∈ An′, ARn′ ∈ An,

(h) αRn ( αRn′,

for any αRn ∈ ARn and αRn′ ∈ ARn′.

Then the conditions of Proposition 2(ii) are satisfied (so that asymptotic

efficiency can be achieved), while for any normal selection criterion ψ

lim sup
n→∞

Pn
{
ψn(yn,An) 6∈ ARn

}
> 0, (44)

where Pn denotes the probability under the distribution of yn.

Proof of Proposition 4:

It can be verified that the conditions of Proposition 2(ii) are met. In

particular, assumption (i) guarantees σ̂2
n →p σ

2 (by Remark 1).

For notational convenience, let n1 = n and n2 = n′ (which depends

only on n1). Since

lim sup
n→∞

Pn
{
ψn(yn,An) 6∈ ARn

}
≥ lim inf

n1→∞

(
1

2

∑
k=1,2

Pnk
{
ψnk(ynk ,Ank) 6∈ ARnk

)
,

and property (P1) implies that ψnk(ynk ,Ank) = φnk(snk), we only need

to prove that

lim inf
n1→∞

(
1

2

∑
k=1,2

Pnk
{
φnk(snk) 6∈ ARnk

)
> 0.

Using property (P2) and assumption (iii), it suffices to prove that for any

αRn1
∈ An1

, αRn2
∈ An2

,∑
k=1,2

Pnk
{
φnk(S) 6∈ ARnk

}
≥ δ (45)

for some fixed constant δ > 0, where

S
∆
= [Snk(α

R
n1

), Snk(α
R
n2

)]T

under probability Pnk . Note that the distribution of S depends on whether

k = 1, 2.
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To prove (45), we shall use an adaptation of Le Cam’s method. For

each α ∈ Ank , we let 1k,α denote the card(Ank)× 1 zero-one vector that

contains a unique ‘1’ representing α, and let IARnk
= {1α : α ∈ ARnk}

for k = 1, 2. For a point x and set S in the Euclidean space, we define

D(x, S) = infs∈S‖x− s‖. For any selection criterion φnk restricted to S,

it defines the test statistic

T (S) =

 1 if D(1φn1 (S), IαRn1
) ≤ D(1φn2 (S), IαRn2

)

2 otherwise.

If T (S) = 1, then assumption iv(f) guarantees that D(1φn2
(S), IARn2

) 6= 0,

which further implies that D(1φn2
(S), IARn2

) =
√

2. Therefore,

Pn2

{
φn2

(S) 6∈ ARn2

}
=

1√
2
E2

{
D(1φn2

(S), IARn2
)

}
≥ 1√

2
E2

{
D(1φn2

(S), IARn2
)1T (S)=1

}
= Pn2

{T (S) = 1}

where 1(·) is the indicator function, and Ek is the expectation with respect

to Pnk (k = 1, 2). Similarly, Pn1

{
φn1

(S) 6∈ ARn1

}
≥ Pn1

{T (S) = 2}. Thus,

we obtain ∑
k=1,2

Pnk
{
φnk(S) 6∈ AR,kn

}
≥
∑
k=1,2

Pnk{T (S) 6= k}. (46)

Let Pk and pk denote the probability distribution of S and its density

function under sample size nk (k = 1, 2), respectively. The right hand

side of (46) is minimized by the Neyman-Pearson test

TNP(S) =

 1 if p1(S) > p2(S)

2 otherwise
.

Direct calculation gives∑
k=1,2

Pnk{T (S) 6= k} ≥
∑
k=1,2

Pnk{TNP(S) 6= k} = 1−Dtv(P1,P2). (47)
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Combining (45), (46), and (47), it remains to prove that

lim sup
n→∞

Dtv(P1,P2) < 1.

For notational convenience, let

U1
∆
= Sn1

(αRn1
), U2

∆
= Sn1

(αRn1
)− Sn1

(αRn2
)

V1
∆
= Sn2

(αRn1
), V2

∆
= Sn2

(αRn1
)− Sn2

(αRn2
)

Let d1, d2 denote the dimensions of αRn1
, αRn2

, respectively. Direct cal-

culation shows that U1, U2, V1, V2 follow non-central chi-squared (nc-χ2)

distributions with non-centrality parameters and degrees of freedom given

below

U1 ∼ nc-χ2(sU1 , r
U
1 ), sU1 = n1∆n1

(αRn1
), rU1 = n1 − d1,

V1 ∼ nc-χ2(sV1 , r
V
1 ), sV1 = n2∆n2

(αRn1
), rV1 = n2 − d2,

U2 ∼ nc-χ2(sU2 , r
U
2 ), sU2 = n1{∆n1

(αRn1
)−∆n1

(αRn2
)}, rU2 = d2 − d1,

V2 ∼ nc-χ2(sV2 , r
V
2 ), sV2 = n2{∆n2

(αRn1
)−∆n2

(αRn2
)}, rV2 = d2 − d1,

It follows from the assumptions of Gaussian noise and assumption iv(h)

that U1, U2 are independent, and V1, V2 are independent. As a result,

Dtv(P1,P2) = Dtv(P[U1,U1−U2],P[V1,V1−V2]) = Dtv(P[U1,U2],P[V1,V2]).

From Lemma 1,

Dtv(PU ,PV ) ≤
2∑

k=1

Dtv(PUk ,PVk).

Next we prove that

lim
n→∞

Dtv(PU1
,PV1

) = 0, (48)

lim sup
n→∞

Dtv(PU2
,PV2

) < 1. (49)
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Let Z denote the standard Gaussian random variable. By triangle

inequality and Lemmas 2 we have

Dtv(PU1
,PV1

) = Dtv(P(U1−rU1 −sU1 )/
√
n1
,P(V1−rU1 −sU1 )/

√
n1

)

≤ C1 +Dtv(PZ ,P(V1−rU1 −sU1 )/
√
n1

)

≤ C1 +Dtv(PaZ+b,P(V1−rV1 −sV1 )/
√
n2

)

≤ C1 + C2 + C3

where

C1
∆
= Dtv(P(U1−rU1 −sU1 )/

√
n1
,PZ)

C2
∆
= Dtv(PaZ+b,PZ), C3

∆
= Dtv(PZ ,P(V1−rV1 −sV1 )/

√
n2

),

a
∆
=

√
n1

n2
, b

∆
=

(rU1 − rV1 ) + (sU1 − sV1 )
√
n2

.

From Lemma 4 and Lemma 2, (48) holds as long as the following condi-

tions hold.

n1

n2
= 1 + o(1) (50)

n1∆n1
(αRn1

)− n2∆n2
(αRn1

)
√
n1

= o(1) (51)

(n1 − d1)− (n2 − d2)
√
n1

= o(1) (52)

as n = n1 → ∞. In fact, assumption iv(a) implies (50), assumptions ii,

iv(a)-(c) imply (51), and assumptions iv(a)(b) imply (52).

To prove (49), by Lemma 6, it suffices to show that

sU2 →∞, lim sup
n→∞

sU2 − sV2√
sU2

< 2
√
e. (53)

In fact, the two inequalities in (53) are implied by assumptions iv(d)&(e),

respectively.
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F. Technical lemmas for the proof of Theorem 1 and Proposition 4

We first introduce some new notation. Total variation distance of two

probability measures P,Q on a sigma-algebra F of subsets of the sample

space X is defined by Dtv(P,Q) = supA∈F |P (A) − Q(A)|. It is related

to the L1 distance by the identity 2Dtv(P,Q) = ‖fP −fQ‖1 where fP , fQ

are absolutely continuous probability density functions.

Lemma 1. Suppose that U = [U1, . . . , Uk]
T and V = [V1, . . . , Vk]

T are

random variables defined on a common probability space such that all Ui’s

are independent and all Vi’s are independent. Then

Dtv(PU ,PV ) ≤
k∑
i=1

Dtv(PUi ,PVi).

Proof. The proof follows from the definition of total variation dis-

tance and the elementary inequality |
∏k
i=1 ai −

∏k
i=1 bi| ≤

∑k
i=1 |ai − bi|

for all real values ai’s and bi’s that |ai| ≤ 1, |bi| ≤ 1.

Lemma 2. Suppose that U and V are random variables, and a, b are

deterministic values. Then

Dtv(PaU+b,PaV+b) = Dtv(PU ,PV ).

Proof. The scale and shift invariance directly follows from the defi-

nition of total variation distance.

Lemma 3. Suppose that U is a univariate Gaussian random variable,

and an, bn are deterministic sequences such that an → 1 and bn → 0 as n

goes to infinity. Then

lim
n→∞

Dtv(PanU+bn ,PU ) = 0.

Moreover, double indexed sequences an,i and bn,i satisfy

max
i∈In
|an,i − 1| → 0, max

i∈In
|bn,i| → 0, (54)
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for some set In ∈ {1, . . . , n}, then

lim
n→∞

max
i∈In

Dtv(Pan,iU+bn,i ,PU ) = 0.

The result for the case of an,i and bn,i can be similarly proved.

Proof. Suppose that U ∼ N (µ0, σ
2
0). Let µ1 = anµ0 + bn, σ

2
1 = a2

nσ
2
0.

The Kullback-Leibler divergence from PanU+bn to PU is

1

2

(
σ2

0

σ2
1

+
(µ1 − µ0)2

σ2
1

− 1 + log
σ2

1

σ2
0

)
,

which goes to zero as n → ∞. The desired result then follows from

Pinsker’s inequality.

The following lemma shows that with large degrees of freedom (com-

pared with non-centrality parameters), standardized noncentral chi-squared

distributions converge to standard Gaussian distribution in total variation

distance (which is stronger than the usual Kolmogorov distance).

Lemma 4. Suppose that Xn is a sequence of noncentral chi-squared

random variables with degrees of freedom rn and non-centrality parameters

sn. Suppose that rn, sn, tn are deterministic sequences such that rn’s are

positive integers and as n→∞,

sn →∞,
sn
rn
→ 0, (55)

rn
tn
→ 1. (56)

Then Dtv(PX̃n ,PZ)→ 0 as n→∞, where

X̃n =
Xn − (rn + sn)√

tn
,

and PZ denotes a standard Gaussian distribution.

Proof. For any fixed δ > 0, we prove that

Dtv(pX̃n , pZ) ≤ δ (57)



60

for all sufficiently large n. The probability density function of Xn is given

by

fXn(x; rn, sn) =

∞∑
i=0

hsn/2(i)fYrn+2i
(x), (58)

where hsn/2(i) is the distribution function of Poisson with mean sn/2,

and Yr is distributed as chi-squared with r degrees of freedom. Condition

(55) and the Chebyshev’s inequality imply that

lim
n→∞

∑
i∈In

hsn/2(i) = 1, where In
∆
=

{
i :
∣∣i− sn

2

∣∣ ≤ (snrn)1/4

}
.

By triangle inequality and the definition of hsn/2(·),

Dtv(PX̃n ,PZ) ≤ 1

2

∞∑
i=0

hsn/2(i)
∥∥∥f{Yrn+2i−(rn+sn)}/

√
tn − fZ

∥∥∥
1

≤ δ

3
+

1

2

∑
i∈In

hsn/2(i)
∥∥∥f{Yrn+2i−(rn+sn)}/

√
tn − fZ

∥∥∥
1

≤ δ

3
+

1

2
max
i∈In

∥∥∥f{Yrn+2i−(rn+sn)}/
√
tn − fZ

∥∥∥
1

(59)

for all sufficiently large n. By Lemma 2,∥∥∥f{Yrn+2i−(rn+sn)}/
√
tn − fZ

∥∥∥
1

=
∥∥∥f{Yrn+2i−(rn+2i)}/

√
rn+2i − fanZ+bn

∥∥∥
1

≤
∥∥∥f{Yrn+2i−(rn+2i)}/

√
rn+2i − fZ

∥∥∥
1

+ ‖fanZ+bn − fZ‖1 , (60)

where

an
∆
=

√
tn

rn + 2i
, bn

∆
=

sn − 2i√
rn + 2i

. (61)

It can be proved that condition (54) holds. Then Lemma 3 implies that

‖fanZ+bn − fZ‖1 ≤
2δ

3
(62)

for all sufficiently large n. Moreover, by (Prohorov, 1952; Bally et al.,

2016, Theorem 2.2)∥∥∥f{Yrn+2i−(rn+2i)}/
√
rn+2i − fZ

∥∥∥
1
≤ 2δ

3
(63)
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for all i ∈ In for all sufficiently large n.

The proof is completed by combining inequalities (59), (60), (62), and

(63).

The following is a technical lemma stating that a Poisson distribution

has negligible total variation distance to its shift as long as such shift is

small.

Lemma 5. Suppose that Xn is a sequence of Poisson random variables

with mean τn → ∞, and ρn is a deterministic sequence of integers such

that ρn = o(
√
τn). Then Dtv(PXn ,PXn−ρn)→ 0 as n→∞.

Proof. It follows from the assumptions and the Chebyshev’s inequal-

ity that

lim
n→∞

∑
i∈In

hτn(i) = 1, where In
∆
=

{
i :
∣∣i− τn∣∣ ≤ (τnρn)1/4

}
.

For any fixed δ > 0, we have∑
i 6∈In

hτn(i) ≤ δ

3
,

∑
i−ρn 6∈In

hτn(i) ≤ δ

3
, (64)

for all sufficiently large n. For all i ∈ In we have i+ τn ∼ i. By Stirling’s

formula,

P(Xn = i)

P(Xn − ρn = i)
=
τ−ρnn (i+ τn)!

i!

∼ τ−ρnn

(
i+ ρn
i

)1/2(
1 +

ρn
i

)i( i+ ρn
e

)ρn
∼ τ−ρnn (i+ ρn)ρn = o(1) (65)

uniformly for i ∈ In as n→∞. Combining (64) and (65) we obtain

Dtv(PXn ,PXn−ρn) ≤ 2δ

3
+

1

2

∑
i∈In

|P(Xn = i)− P(Xn − ρn = i)| ≤ δ

for all sufficiently large n.
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The following lemma shows that with the total variation distance be-

tween two noncentral chi-squared distributions is close to zero as long as

their difference in mean is small compared with their standard deviations.

Lemma 6. Suppose that X1,n, X2,n are two sequences of noncentral

chi-squared random variables with degrees of freedom r1,n, r2,n and non-

centrality parameters s1,n, s2,n, respectively. Suppose that rk,n, sk,n are

deterministic sequences such that rk,n’s (k = 1, 2) are positive integers

and as n→∞,

s1,n →∞, (66)

r1,n − r2,n√
s1,n

→ 0; (67)

lim sup
n→∞

s1,n − s2,n√
s1,n

< 2
√
e. (68)

Then lim supn→∞Dtv(pX1,n
, pX2,n

) < 1, where pX denotes the distribu-

tion of X.

Proof. Choose any fixed δ such that

0 < 3δ < 1− lim sup
n→∞

s1,n − s2,n

2
√
e · s1,n

.

We prove that Dtv(PX1,n
,PX2,n

) ≤ 1 − δ for all sufficiently large n. For

simplicity, we assume that r1,n − r2,n are even numbers. Other cases

can be similarly proved. Define In = {i : |i − s1,n/2| < s
1/2+ε
1,n } for any

ε ∈ (0, 1/2). Similar to the argument in (64) we have

∑
i 6∈In

hs1,n/2(i) ≤ δ

4
,

∑
i−(r1,n−r2,n)/26∈In

hs2,n/2(i) ≤ δ

4
. (69)
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Using (69) and identity (58) we have

Dtv(PX1,n
,PX2,n

) ≤ δ

2
+

∑
i∈In,

j=i+(r1,n−r2,n)/2

|hs1,n/2(i)− hs2,n/2(j)| · ‖fYr1,n+2i
(y)‖1

≤ δ

2
+Dtv(PY1,n

,PY2,n−(r1,n−r2,n)/2)

≤ δ

2
+Dtv(PY1,n

,PY2,n
) +Dtv(PY2,n

,PY2,n−(r1,n−r2,n)/2)

(70)

where Y1,n, Y2,n are Poisson random variables with means s1,n/2, s2,n/2,

respectively. Lemma 5 and conditions (68), (67) imply that

Dtv(PY2,n
,PY2,n−(r1,n−r2,n)/2) ≤ δ

2
(71)

for all sufficiently large n. Using (Adell and Jodrá, 2006, Inequality 2.2),

Dtv(PY1,n
,PY2,n

) ≤
√

2

e

∣∣∣∣√s1,n

2
−
√
s2,n

2

∣∣∣∣
=

1√
e

|s1,n − s2,n|√
s1,n +

√
s2,n

≤ 1− 2δ (72)

for all sufficiently large n, where the last inequality follows from condition

(68). Combining (70)-(72) we complete the proof.
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G. Proof of Theorem 2

Remark 2 (Interpretation of each condition). The conditions

that do not appear in Proposition 2 are explained below. In view of the

previous intuitive arguments, (23) is a regularity condition to guarantee

that GIC2 does not overfit too much, namely dn(α̂gic2
) = dn(αcn) +Op(1)

in parametric scenario. Conditions (22) and (24) ensure that (6) are

sufficiently large penalties to eliminate all the remaining overfitting can-

didates. We note that (23) together with (24) gives a stronger version of

condition (17). They are trivially satisfied for nested model classes, given

that E(e4+δ
1 ) <∞ for some constant δ > 0.

In the nonparametric scenario, (25) controls the divergence rate of λn

so that the optimal performance at the boundary α̂gic2
can be reached. The

regularity of Rn(·) serves to further ensure that λn < q̃ dn(α̂gic2
)/ log dn(α̂gic2

)

for some constant q̃ < 1, which is used in the proof.

The regularity of Rn(·) means that the optimal (sequence of) risks

Rn(αRn ) can be approached by αn only if the model dimension dn(αn)

and one of {dn(α) : α ∈ ARn } are comparable. It is a mild assumption.

Consider, for example, An = {α1, α2, . . .}, αd = {1, . . . , d} with algebraic

decaying model approximation error: ∆n(αd) = c d−γ. For this case, we

have dn(αRn ) ∼ nr (0 < r < 1). In view of Remark 1, suppose that in the

parametric case, a fixed dn(αcn) and condition (10) are further assumed,

then λn ∼ nτ with any 0 < τ < r suffices to meet all the conditions

(16), (22), (25). In fact, the assumption of regular Rn(·) is mostly for

easy verification when Rn(·) is known, and it is not essential. Instead,

one may require λn ≤ q dn(α̂gic2
)/ log dn(α̂gic2

) directly. The condition

dn(αRn ) ≥ d0 for some constant d0 > 1 is mild since dn(αRn ) → ∞ is

common in nonparametric model classes (as we have discussed before).

It is only to guarantee that (25) implies λn ≤ qdn(α)/ log dn(α) for all
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α ∈ ARn .

We note that the divergence rates of dn and card(An) are not explicitly

required in Theorem 2 (or in Proposition 1 and 2). They implicitly play

a role in conditions such as (16). Also, αcn is not required to be bounded

by a fixed constant.

Proof of Theorem 2:

Throughout the proof, let α̂n denote the model selected by Bridge

criterion.

L-consistency and R-consistency under Acn 6= ∅

Step 1): We first prove that dn(α̂gic2
)−dn(αcn) is stochastically bounded.

Identity (43), σ̂2
n →p σ

2, and conditions (9), (29) imply that

P
{

min
α∈An\Acn

Gn,2(α) > Gn,2(αcn)

}
→ 1.

Thus, it suffices to prove that the dimension of arg minα∈Acn Gn,2(α) is

dn(αcn) + Op(1). For α ∈ Acn, from (43), the event Gn,2(α) < Gn,2(αcn)

implies that

2σ̂2
n{dn(α)− dn(αcn)} < ‖e‖2Pn(α) − ‖e‖

2
Pn(αcn),

or by (8),

‖e‖2Pn(α)−Pn(αcn)

dn(α)− dn(αcn)
− σ2 > 2σ̂2

n − σ2. (73)

For any fixed ε ∈ (0, 1), since σ̂n →p σ
2, there exists n1 ∈ N such that for

all n > n1,

P
{

2σ̂2
n − σ2 >

1

2
σ2

}
> 1− ε

2
. (74)

Similar to the proof of (41), we have

P
{‖e‖2Pn(α)−Pn(αcn)

dn(α)− dn(αcn)
− σ2 >

σ2

2

}
≤ C

(
σ2

2

)−2m3

{dn(α)− dn(αcn)}−m3 .

(75)
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Combining assumption (23) and inequality (75), there exists n2, k1 ∈ N

such that for all n > n2,

P

{
max

α∈Acn, dn(α)−dn(αcn)>k1

‖e‖2Pn(α)−Pn(αcn)

dn(α)− dn(αcn)
− σ2 >

σ2

2

}
≤ ε

2
(76)

It follows from (74) and (76) that for all n > max{n1, n2},

P

{
max

α∈Acn, dn(α)−dn(αcn)>k1

‖e‖2Pn(α)−Pn(αcn)

dn(α)− dn(αcn)
− σ2 > 2σ̂2

n − σ2

}
< ε, (77)

which further implies that⋃
α∈Acn, dn(α)−dn(αcn)>k1

{
Gn,2(α) < Gn,2(αcn)

}
(78)

holds with probability less than ε. Therefore, dn(α̂gic2
) = dn(αcn)+Op(1).

Step 2): We prove that P{α̂n = αcn} → 1. We first prove P{α̂n ∈

Acn} → 1, which only requires the proof of

P
{

min
α∈An\Acn, p(α)≤dn(α̂gic2

)
Bn,λn(α) > Bn,λn(αcn)

}
→ 1. (79)

We then prove P{α̂n = αcn, α̂n ∈ Acn} → 1. Comparing the definitions in

(2) and (5), we can calculate from (36) that

Bn,λn(α) =
‖en‖2

n
+
λnσ̂

2
nHdn(α)

n
−
‖en‖2Pn(α)

n
if α ∈ Acn

‖en‖2

n
+ Ln(α) + op{Ln(α)}+

λnσ̂
2
nHdn(α) − 2σ2dn(α)

n
if α ∈ An \ Acn

(80)

where the op is taken uniformly in α ∈ An \Acn. Under identity (28) and

σ̂2
n →p σ

2, it was proved in (Shao, 1997, eq.(6.1)) that |σ̂2
n − σ2|dn(α) =

op{nLn(α)} uniformly in α ∈ An \ Acn. Thus, the second part of identity

(80) may be rewritten as

Bn,λn(α) =
‖en‖2

n
+ Ln(α) + op{Ln(α)}+

{λnHdn(α) − 2dn(α)}σ̂2
n

n
(81)
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if α ∈ An \ Acn. From (80) and (81), for all α ∈ An \ Acn,

Bn,λn(α)−Bn,λn(αcn) =Ln(α) + op{Ln(α)} − 2σ2dn(α)

n
+
‖en‖2Pn(αcn)

n

+
λnσ̂

2
n(Hdn(α) −Hdn(αcn))

n
.

Thus, to prove (79) it suffices to prove that

P
{

min
α∈An\Acn, p(α)≤dn(α̂gic2 )

(
Ln(α) + op{Ln(α)} − 2σ2dn(α)

n
−
λnσ̂

2
nHdn(αcn)

n

)
> 0

}
→ 1,

or the following stronger result

P
{ ⋂
α∈An\Acn, p(α)≤dn(α̂gic2

)

{
nLn(α){1 + op(1)} > 2σ2dn(α) + λnσ̂

2
ndn(αcn)

}}
→ 1. (82)

In fact, from identity dn(α̂gic2
) = dn(αcn) + Op(1) proved in step 1),

2σ2dn(α) is negligible compared with λnσ̂
2
ndn(αcn). And thus (82) is fur-

ther implied by conditions (16), (29), and σ̂2
n →p σ

2.

To prove P{α̂n = αcn, α̂n ∈ Acn} → 1, it suffices to show that given

any ε > 0, P(dn(α̂n) > dn(αcn) , α̂n ∈ Acn) < ε for all sufficiently large n.

From step 1) there exists a positive integer k1 such that

P{dn(α̂n)− dn(αcn) ≥ k1} <
ε

2
. (83)

It remains to prove that P{0 < dn(α̂n) − dn(αcn) < k1 , α̂n ∈ Acn) < ε/2

for all sufficiently large n. From (80),

P
{

min
α∈Acn,0<dn(α)−dn(αcn)<k1

Bn,λn(α) < Bn,λn(αcn)

}
≤ P

{ ⋃
α∈Acn,0<dn(α)−dn(αcn)<k1

{
λnσ̂

2
n(Hdn(α) −Hdn(αcn)) < ‖en‖2Pn(α)−Pn(αcn)

}}

≤ P
{

λnσ̂
2
n

dn(αcn) + 1
< max

α∈Acn,0<dn(α)−dn(αcn)<k1
‖en‖2Pn(α)−Pn(αcn)

}
. (84)
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Conditions (24), (40) (with m2 replaced by m3), and Markov’s inequality

imply

max
α∈Acn,0<dn(α)−dn(αcn)<k1

‖en‖2Pn(α)−Pn(αcn)

{dn(α)− dn(αcn)}σ̂2
n

= Op(1). (85)

Combining (22) and (85), the value in (84) is less than ε/2 for all suffi-

ciently large n. It then follows that P{0 < dn(α̂n)− dn(αcn) < k1) < ε/2

for all sufficiently large n.

Asymptotic loss and risk efficiency under Acn = ∅

Given Proposition 2 and the assumptions of Theorem 2, GIC2 is

asymptotically risk efficient. Furthermore, the regularity of Rn(·) implies

that (see Durrett, 2010, Theorem 2.3.2)

max
α∈ARn

∣∣∣∣dn(α̂gic2
)

dn(α)
− 1

∣∣∣∣→p 0. (86)

From (81), for all α ∈ An \ Acn = An,

Bn,λn(α)−Bn,λn(α̂gic2
)

= Ln(α){1 + op(1)} − Ln(α̂gic2
){1 + op(1)}+

σ̂2
n

n
Jn(α), (87)

where Jn(α)
∆
= λn{Hdn(α) −Hdn(α̂gic2

)} − 2{dn(α)− dn(α̂gic2
)}. Next, we

prove that

P
{

min
α∈An\Acn,dn(α)<dn(α̂gic2 )

Jn(α) > 0

}
→ 1. (88)

In fact, it can be verified that the function

g(d)
∆
= −λn

dn(α̂gic2 )∑
j=d+1

1

j
− 2{d− dn(α̂gic2

)} (89)

for a given dn(α̂gic2
) achieves its minimum over d = 1, . . . , dn(α̂gic2

) at

either d = 1 or d = dn(α̂gic2
) − 1. Using conditions (25), (86), and the
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inequality Hj < log j + 1 (∀j ∈ N), we can easily calculate that

g(1) > −λn log dn(α̂gic2
) + 2{dn(α̂gic2

)− 1}

= 2dn(α̂gic2
){1 + op(1)}

[
dn(αRn )− 1

dn(αRn )
{1 + op(1)} − q

2

]
> 0, (90)

g(dn(α̂gic2
)− 1) = − λn

dn(α̂gic2
)

+ 2 > 0, (91)

with probability approaching one as n → ∞. We thus proved (88) from

(90) and (91).

From the definition of of α̂n, Bn,λn(α̂n) − Bn,λn(α̂gic2
) ≤ 0. It then

follows from (87) and (88) that

P
{
Ln(α̂n){1 + op(1)} − Ln(α̂gic2

){1 + op(1)} ≤ 0

}
→ 1. (92)

Dividing both sides of (92) by Ln(α̂gic2
), we obtain that for any fixed

ε > 0,

P
{
Ln(α̂n)

Ln(α̂gic2
)
< 1 + ε

}
→ 1. (93)

Combining (93) with Ln(α̂gic2
)/Ln(αLn) →p 1, we obtain for any fixed

ε > 0 that

P
{
Ln(α̂n)

Ln(αLn)
< 1 + ε

}
→ 1. (94)

On the other hand, by the definition of αLn , Ln(α̂n) ≥ Ln(αLn). Thus,

we have proved the asymptotic loss efficiency of α̂n. The asymptotic risk

efficiency directly follows from (29).

H. Proof of Proposition 3

In the parametric scenario, the consistency of BC and GICλn indicates

that pin →p 1. In the nonparametric scenario, we obtain from the regu-

larity of Rn(·), the definition of αRn , and the efficiency of α̂gic2
, α̂bc that
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dn(α̂gic2
)/dn(αRn ), dn(α̂bc)/dn(αRn )→p 1, which further implies

dn(α̂bc)/dn(α̂gic2
)→p 1.

We shall also prove that

P
{
dn(α̂gicλn )

dn(α̂gic2
)
< c2

}
→ 1 (95)

as n→∞. Then, with probability tending to one, we have

pin ≤
|dn(α̂bc)− dn(α̂gic2

)|
|dn(α̂gicλn )− dn(α̂gic2

)|
=
|dn(α̂bc)/dn(α̂gic2

)− 1|
|dn(α̂gicλn )/dn(α̂gic2

)− 1)|
→p 0,

which concludes the proof.

To prove (95), we rewrite Gn,λn(α) (for α ∈ An) in (36) as

Gn,λn(α) =
‖en‖2

n
+ Ln(α) + op{Ln(α)}+

(λn − 2)σ2dn(α)

n

+
λn(σ̂2

n − σ2)dn(α)

n
. (96)

By the assumption σ̂2
n →p σ

2 and the first inequality in (26), we have

λn(σ̂2
n − σ2)dn(α)/n = op(Rn(α)) uniformly in α ∈ An. From (29), we

may rewrite (96) as

Gn,λn(α) =
‖en‖2

n
+ {1 + op(1)}Rn(α) + (λn − 2)σ2dn(α)/n

= C + {1 + op(1)}R∗n(α)

where C = ‖en‖2/n does not depend on α. By the definition of α̂gicλn , α
∗
n,

it follows that
R∗n(α̂gicλn )

R∗n(α∗n)
→p 1,

and further from the regularity of R∗n(·), dn(α̂gicλn )/dn(α∗n)→p 1. There-

fore, we obtain

dn(α̂gicλn )

dn(α̂gic2
)

=
dn(α̂gicλn )

dn(α∗n)

dn(α∗n)

dn(αRn )

dn(αRn )

dn(α̂gic2
)

= {1 + op(1)} dn(α∗n)

dn(αRn )
< c2

with probability tending to one as n→∞.
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I. Another definition of PI

Another definition of PI was given by Liu and Yang (2011). It is defined

by

pi(2)
n = min

α∈Λ(α̂n)

Sn(α) + dn(α)σ̂2
n log n− nσ̂2

n

Sn(α̂n) + dn(α̂n)σ̂2
n log n− nσ̂2

n

if dn(α̂n) > 1, and pi
(2)
n = n otherwise, where α̂n is selected by some

consistent procedure (in the sense that it is consistent in the parametric

scenario), and Λ(α) is the set of sub-models of α with dimension dn(α)−

1. It is assumed in (Liu and Yang, 2011) that Λ(α) is nonempty for

any α with dimension greater than one. In our simulation, we relax the

definition to be the set of sub-models whose dimension is the closest (but

not equal) to dn(α).

The intuition is that a data-generating model should be very different

(in terms of goodness of fit) from any sub-model, while for a mis-specified

model class, the selected model varies slightly when few variables are

dropped. Liu and Yang (2011) showed that pi
(2)
n converges in probability

to∞ and 1 in parametric and nonparametric scenarios, respectively. Our

pin is defined based on fundamentally different motivations, and validated

under different assumptions. In Section B, we shall show that both pin

and pi
(2)
n work as expected in various experiments.
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J. Proof of Theorem 3

We consider the (typical) case where α̂bc is not equal to ᾱn = {1, . . . , dn}.

Similar proof can be applied to the case where α̂bc = ᾱn and An is

expanded during the simulated validation. For notational convenience,

“stage 1” refers to the estimation and selection procedure on the original

data (i.e. with mean function fn), and “stage 2” refers to the counterpart

during simulated validation (i.e. with mean function f̃n).

We first prove for the parametric scenario. By Theorem 2, P(α̂bc =

αcn) → 1. We only need to verify that with α̂bc = αcn, the conditions in

Case 1 of Theorem 2 still hold at stage 2 with probability going to one. It

is easy to verify that conditions (8), (22)-(24), and the estimated variance

σ̂2
s →p σ

2 hold at stage 2. Also, condition (9) would be implied by the

combination of (16) and (22). Thus, it remains to prove that (13) and

(16) hold with probability going to one at stage 2.

Let R̃n(·) denote the risk function at stage 2. Recall from (12) that

R(α) and R̃n(α) may be written as

nR(α) = n∆n(α) + σ2dn(α),

nR̃(α) = n∆̃n(α) + σ2dn(α).

By a similar argument used to derive (42),

‖fn − f̃n‖2 = ‖Pn(αcn)ε̃n‖2 = Op(dn(αcn)).

The difference between ∆̃n(α) and ∆n(α) can be uniformly bounded by

max
α∈An

∣∣∣∣√n∆̃n(α)−
√
n∆n(α)

∣∣∣∣ = max
α∈An

∣∣∣∣‖Pn(α)⊥f̃n‖ − ‖Pn(α)⊥fn‖
∣∣∣∣

≤ max
α∈An

‖Pn(α)⊥(f̃n − fn)‖

≤ ‖f̃n − fn‖

= Op
(√

dn(αcn)
)
. (97)
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Therefore, we have

max
α∈An\Acn

|R̃(α)−R(α)| = max
α∈An\Acn

|n∆̃n(α)− n∆n(α)|

≤ Op
(√

dn(αcn)
)

max
α∈An

(√
n∆̃n(α) +

√
n∆n(α)

)
≤ Op

(√
dn(αcn)

)(
Op
(√

dn(αcn)
)

+ 2
√
n∆n(α)

)
< Op

(√
dn(αcn)

)(
Op
(√

dn(αcn)
)

+ 2
√
R(α)

)
= op(1)R(α) (98)

with probability going to one as n → ∞, where (98) is due to condition

(9) at stage 1. It follows from (98) that conditions (13) and (16) hold

with probability going to one at stage 2.

We then prove for the nonparametric scenario. Suppose that α̂bc is

nested under a larger model α′ with dimension dn(α̂bc) + 1. Let α̂gic2,s

denote the model selected by AIC in stage 2. We rewrite P(α̂bc,s = α̂bc)

as

P(α̂bc,s = α̂bc) = p1 + p2 + p3, (99)

p1 = P(α̂gic2,s > α̂bc, α̂bc,s = α̂bc),

p2 = P(α̂gic2,s = α̂bc, α̂bc,s = α̂bc),

p3 = P(α̂gic2,s < α̂bc, α̂bc,s = α̂bc).

By the rule of BC in (5), p3 = 0. Next we bound p1 and p2.

The event α̂gic2,s > α̂bc, α̂bc,s = α̂bc implies that BC favors α̂bc over

α′, namely

S̃n(α̂bc)− S̃n(α′) <
λnσ̂

2
s

dn(α̂bc) + 1

by the definition in (5). Here, S̃(α)
∆
= ‖ỹn − f̂n,s(α)‖2, and f̂n,s is the

least square estimates of f̃n. As a result,

p1 ≤ P
(
α̂gic2,s > α̂bc, E1

)
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where E1 denotes the event

S̃n(α̂bc,s)− S̃n(α′)

σ2
<

λnσ̂
2
s

σ2{dn(α̂bc) + 1}
. (100)

The left hand term in (100) may be rewritten as

C
∆
= σ−2‖es‖2Pn(α′)−Pn(α̂bc)

, (101)

which follows chi square distribution with one degree of freedom (χ2
1)

since es is Gaussian in the simulated validation. The second hand term

in (100) is

σ̂2
s

σ2

λn
dn(αRn )

dn(αRn )

dn(α̂bc) + 1

which, by applying σ̂2
s →p σ

2, condition (25) and dn(α̂bc)/dn(αRn ) →p 1,

is asymptotically less than 2. Therefore, we have

p1 ≤ P(α̂gic2,s > α̂bc, C < 3) (102)

Likewise, the event α̂gic2,s = α̂bc, α̂bc,s = α̂bc implies that

S̃n(α̂bc)− S̃n(α′) < 2σ̂2
s

by the definition in (2). This implies that

p2 ≤ P(α̂gic2,s = α̂bc) ≤ P(α̂gic2,s = α̂bc, C <
2σ̂2

s

σ2
< 3) (103)

with probability close to one for large n. Combining (99), (102) and (103),

we obtain P(α̂bc,s = α̂bc) ≤ P(C < 3) where C is a χ2
1 random variable.

This concludes the proof.
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K. Theoretical analysis of BC-VO

We introduce some helpful notation for the theoretical results. Let X1, X2

denote the design matrices corresponding to the two disjoint datasets

D1,D2, respectively. Let X1(αcn), X1(−αcn) denote the submatrices of X1

consisting of columns in αcn, {1, . . . , dn} − αcn, respectively. Let X1(k)

denote the kth column of X1. For a matrix M ∈ Ru×v Let ‖M‖∞ =

max1≤i≤u
∑

1≤j≤v |Mij |. We standardize the data in D1a such that

n−1/2 max
j∈{1,...,dn}\αcn

‖X1(j)‖ ≤ 1.

Similar standardization is applied to Dte.

K.1. ARM weighting scheme

As a default option in ’bc’ package, we use the following ARM weighting

procedure.

• Randomly split D1b into a training set Dtr and a testing set Dte;

• For each model α ∈ Ân, we use the least squares method on Dtr to

obtain an estimated coefficients β̂α (and the corresponding regres-

sion function f̂α(·)) and noise variance σ̂2;

• For each model α ∈ Ân, compute the (unnormalized) weight

wα = e−Cα
∏
i∈Dte

N(yi; f̂α(xi), σ̂
2), where (104)

Cα = dn(α) log
(
1 +

dn
dn(α)

)
+ 2 log(dn(α) + 2)

and N(y;µ, σ2) denotes the density of Gaussian distribution with

mean µ and variance σ2 evaluated at y.

Note that D1b is used for parameter estimation by each model and D1a

is used to assess the prediction performance and then the weights are
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assigned accordingly. Compared with the original ARM by Yang (2001),

the model-specific variance σ̂2
α in (104) is replaced with σ̂2 that can be

estimated using all the variables in Ân. This is mainly for technical

convenience, and has little effect on empirical performance from our ex-

perimental studies.

K.2. Accuracy of variable ordering

Proposition 5 below implies that the first s variables in variable ordering

exactly match all the significant variables. It further implies that αcn ∈

An.

Proposition 5. For the variable importance uk’s produced by step

(d), αc ∈ Ân implies that

min
k∈αc

uk > max
j /∈αc

uj

with probability going to one as n→∞, given that the following conditions

hold.

1. In step (b), the number of subsets from each penalized method is

restricted to be no more than c0/3, and maxα∈Ân d(α) ≤ c0 for some

constant c0 > 3s that does not depend on n.

2. In step (c), D1b∩D1a = ∅, and card(Dte)/card(Dtr)→ 0, card(Dte)→

∞ as n→∞ in the ARM weighting scheme.

3. There exists a constant δc0 such that ‖Xtrβ‖ ≥ δc0‖β‖
2 for every

β ∈ Rp with at most c0 nonzeros.

Condition 1 is only for technical convenience. For LASSO, it has

been proved under some conditions that the solution paths are piecewise

linear and nested (Efron et al., 2004; Rosset and Zhu, 2007; Tibshirani

et al., 2013). It is easy to control the number of selected variables (and

thus the number of candidates) through the regularization parameter.
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For SCAD and MCP, it seems not clear whether the produced solution

paths are nested up to the authors’ knowledge. In practice, we found

through numerical experiments that the above lemma generally holds

with c0 = 3
√
n1a for a broad class of Gaussian ensembles. And this is the

default parameter in ‘bc’ package. Condition 2 is specific to the weight-

ing scheme. The intuition is that training size needs to be sufficiently

large so that the weight of the smallest correct model αcn is not negligible

compared with larger models that nest it. Condition 3 is to guarantee

that the least squares method is applicable and the model αc has a non-

negligible weight. This condition can be implied by, e.g., the existence of

c0-restricted isometry property (Candes and Tao, 2005).

Proof of Proposition 5:

For brevity, let ntr = card(Dtr), nte = card(Dte). For any α ∈ Ân∩Acn,

Condition 3 implies that αc ⊆ α. Therefore, by definition of uk’s in step

(d) it remains to prove

max
α∈Ân\Acn

wα
wαc
→p 0, max

α∈Ân∩Acn

wα
wαc

< c, (105)

for some fixed constant c with probability going to one, as n → ∞. The

wα in (104) may be rewritten as

wα ∝ cα exp

{
− 1

2σ̂2
‖Xte(β̂α − β∗)− e‖2

}
where e is the i.i.d. noise vector of size nte, and β̂α is the least squares

estimate from Dtr.

Thus, to prove (105) it is sufficient to prove that for any α ∈ Ân−Acn

B
∆
= ‖Xte(β̂αc − β∗)− e‖2 − ‖Xte(β̂α − β∗)− e‖2 (106)

goes to −∞ in probability, and for any α ∈ Ân ∩Acn, B converges to zero

in probability, as n→∞. We rewrite (106) as B1 +B2 + +B3 where

B1 = ‖Xte(β̂αc − β∗)‖2, B2 = ‖Xte(β̂α − β∗)‖2, B3 = 2eTXte(β̂αc − β̂α).
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It follows from Condition 2 and B1 = (nte/ntr)‖n−1/2
te Xte δα‖2 where

δα
∆
=
√
ntr(β̂α−β∗) = Op(1) that B1 = op(1). For α ∈ Ân−Acn, Condition

3 implies that B2 = Op(nte) and B2 = Op(n
1/2
te ). Thus B →p −∞ as

n→∞. For α ∈ Ân∩Acn, it can be similarly proved that B2 = op(1) and

B3 = op(1), and thus B →p 0 as n→∞.

K.3. Oracle property of BC-VO

The following Theorem 4 establish the oracle property of BC in sparse

subset selection. Note that we assume fixed design matrix for techni-

cal convenience. Extensions to the case of random design matrices are

possible, but we will not elaborate in the rest of the paper.

Theorem 4. The above step (f) produces an estimate that satisfies

the oracle property and R-consistency, assuming that the conditions of

Proposition 5 hold and the following conditions hold.

1. There exists some fixed constant c1 ∈ (0, 1] such that∥∥∥∥∥X1a(−αc)TX1a(α
c)

{
X1a(α

c)TX1a(α
c)

}−1
∥∥∥∥∥
∞

≤ 1− c1.

2. There exists some fixed constant c2 > 0 such that

eigmin

(
1

n
X1a(α

c)TX1a(α
c)

)
≥ c2.

3. There exists a constant δ
′

c0 such that ‖X2β‖ ≥ δ
′

c0‖β‖
2 for every

β ∈ Rp with at most c0 nonzeros.

4. λn →∞.

5. E(e4
1) <∞.

Conditions 1 and 2 are typical assumptions for high dimensional re-

gression, and they were also considered in e.g. Fuchs (2005); Wainwright

(2009). Condition 3 here is similar to Condition 3 of Proposition 5, and
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they are usually guaranteed with high probability for randomly generated

design matrices (Candes and Tao, 2005). Its use here is to distinguish the

“parametric” from the “nonparametric” models. Condition 4 is a mild

requirement of choosing λn. No upper bound of λn is required because

we are only interested in selection consistency here. Condition 5 is a mild

regularity assumption on noises.

Proof of Theorem 4:

Given Conditions 1 and 2, and β∗ being fixed, it follows from (Wain-

wright, 2009, Theorem 1) that αc can be selected by LASSO with prob-

ability going to one for some regularization parameter. Given c0/3 > s,

this further implies that P(αcn ∈ Ân)→ 1 as n→∞. Therefore, by using

Proposition 5 we obtain

P(αc ∈ An)→ 1 (107)

as n → ∞ in step (e). It remains to show that the conditions of Case 1

in Theorem 2 hold when applying step (f).

Because An is nested and finite, (107) implies that σ̂2
n →p σ

2 and

condition (8). Condition 3 implies (9) and (13), and Condition 4 implies

(22). Moreover, (23) and (24) are trivially satisfied with m1 = 1. By

applying Theorem 2 we obtain the consistency in selecting αc.

In step (f), with αc being correctly selected, one could estimate β∗

at oracle rates by restricting to αc. To prove R-consistency, we observe

from (12) that any model α with Rn(α) ≤ Rn(αc) = σ2s/n must satisfy

dn(α) ≤ s. By Condition 3 of Theorem 4 and c0 ≥ 3s, we have ∆n(α) > δ

for some fixed constant δ > 0. This is impossible as n→∞.
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