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Abstract—One of the main challenges in identifying structural
changes in stochastic processes is to carry out analysis for time
series with dependency structure in a computationally tractable
way. Another challenge is that the number of true change points is
usually unknown, requiring a suitable model selection criterion to
arrive at informative conclusions. To address the first challenge, we
model the data generating process as a segment-wise autoregres-
sion, which is composed of several segments (time epochs), each of
which modeled by an autoregressive model. We propose a multi-
window method that is both effective and efficient for discovering
the structural changes. The proposed approach was motivated by
transforming a segment-wise autoregression into a multivariate
time series that is asymptotically segment-wise independent and
identically distributed. To address the second challenge, we de-
rive theoretical guarantees for (almost surely) selecting the true
number of change points of segment-wise independent multivari-
ate time series. Specifically, under mild assumptions, we show that
a Bayesian information criterion like criterion gives a strongly
consistent selection of the optimal number of change points, while
an Akaike information criterion like criterion cannot. Finally, we
demonstrate the theory and strength of the proposed algorithms
by experiments on both synthetic- and real-world data, includ-
ing the Eastern U.S. temperature data and the El Nino data. The
experiment leads to some interesting discoveries about temporal
variability of the summer-time temperature over the Eastern U.S.,
and about the most dominant factor of ocean influence on climate,
which were also discovered by environmental scientists.

Index Terms—Autoregression, change detection, information
criteria, large deviation analysis, strong consistency, time series.

I. INTRODUCTION

T IME series data usually exhibits occasional changes in
their structure, such as network anomalies in complex IP

networks [1], distributional changes in teletraffic models [2],
sudden changes of volatility in stock markets due to finan-

Manuscript received October 25, 2016; revised March 8, 2017 and May 11,
2017; accepted May 26, 2017. Date of publication June 5, 2017; date of current
version June 28, 2017. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Joao Xavier. This work
was supported by Defense Advanced Research Projects Agency under Grant
W911NF-14-1-0508 and Grant N66001-15-C-4028. (Corresponding author:
Jie Ding.)

The authors are with John A. Paulson School of Engineering and Ap-
plied Sciences, Harvard University, Cambridge, MA 02138 USA (e-mail:
jieding@fas.harvard.edu; yuxiang@seas.harvard.edu; lshen@fas.harvard.edu;
vahid@seas.harvard.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes soft-
ware implementations (in MATLAB) and real data used in the paper. Contact
jieding@fas.harvard.edu for further questions about this work.

Digital Object Identifier 10.1109/TSP.2017.2711558

cial crises [3], variations of an electroencephalogram (EEG)
signal caused by mode changes in the brain [4], or environmen-
tal changes in various ecosystems [5], [6]. Change detection
analysis tries to identify not only whether a time series is a con-
catenation of several segments, in which the neighboring ones
are generated from different probability distributions, but also
how many change points there are. There has been a vast amount
of work in the filed of change point analysis. In the parametric
settings, the likelihood function naturally plays a key role, for
example in the cumulative sum [7], [8] and the generalized likeli-
hood ratio [9] approaches. Various tests have been developed for
tracking changes in time series statistics such as the mean [10],
[11], the variance [12]–[14], the autocovariance function [10],
[15], and the spectrum [16]. Nonparametric approaches usually
rely on kernel density estimation. A widely used approach is
to perform change detection by direct estimation of the ratio
of probability densities [17]–[19] or using some dissimilarity
measure in feature space [20], without estimating densities as
an intermediary step. For practical implementations, bisection
procedure and its extensions [21]–[24] have been widely stud-
ied. Exact search methods such as segment neighborhood [25]
and optimal partitioning [26], [27] have also been widely ap-
plied. Other remarkable progress in change point discovery for
dependent time series data have been made in [28]–[31]. More
detailed references to the literature can be found in monographs
and review papers such as [7], [32]–[34].

In this paper, we are focusing on the offline multiple change
detection problem. As with any other statistical inference proce-
dure, it is crucial to apply an appropriate model selection proce-
dure in order to select the number of change points, whenever it
is unknown. A common way is to apply the penalized approach,
which selects the model dimension by minimizing the sum of
goodness of fit and a penalty term. The three commonly used
penalties are Akaike information criterion [35], [36], Bayesian
information criterion (BIC) [37], and Hannan and Quinn in-
formation criterion (HQ) [38]. AIC is derived by minimizing
the Kullback-Leibler divergence between the true distribution
and the estimate of a candidate model, BIC is from a large
sample approximation that aims at selecting a model of maxi-
mum posterior probability, HQ replaces the logN term in BIC
by c log logN(c > 1), where N is the sample size. In some
parametric models where regularity conditions are met, such
as autoregressive models, it has been rigorously proved that
AIC produces an overfitting model with non-vanishing proba-
bility, while BIC or HQ selects the model that converges al-
most surely to the true model (if it is included in the candidate
set). In addition, HQ was proved to be the smallest penalty
term that guarantees strong consistency, i.e, almost sure con-
vergence [38]. Though these three criteria have been used as
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general-purpose model selection rules in various statistical mod-
els, their validity in terms of asymptotic behavior need to be ver-
ified case by case, especially for parametric or semi-parametric
models where regularity conditions may not hold. Examples in-
clude finite mixture models [39]–[43], and change point models
considered in this paper. To the best of our knowledge, several
remarkable works have studied the consistency in selecting the
number of change points for the change detection problem, e.g.,
[44]–[47], but the theory of strong consistency for penalized
method has not been well studied before.

A typical offline multiple change point analysis aims to solve
the following problem. Given observations y1 , . . . , yN ∈ RD

and M ∈ N, the goal is to find integers 0 < �1 < · · · < �M <
N that minimize the following sum of within-segment loss

eM =
M+1∑

k=1

Loss(y�k −1 +1 , . . . , y�k ), (1)

where Loss(·) is some selected loss function and by default
�0 = 0, �M+1 = N . Here, specified number of change points
M is usually estimated using penalized approach. A simple and
widely adopted loss function is the quadratic loss [46] defined
by Lossq (x�j −1 +1 , . . . , x�j ) =

∑�j
n=�j −1 +1 |xn − x̄|2 , where x̄

is the sample mean of x�j −1 +1 , . . . , x�j , and | · | denotes the
Euclidean norm of a vector. One reason for using the quadratic
loss is that it enables efficient k-means type fast implementa-
tions. This is to be discussed later. Other commonly used loss
functions include the negative log-likelihood associated with a
specified parametric model [48], [49], or the cumulative sums
[8], [50].

In this work, we investigate the following two directions in
detecting structural changes in time series:

1) In Section II, we consider the formulation of change point
analysis for a general stochastic process. The basic idea is to as-
sume that the time series data consists of several segments each
of which is generated from a finite order autoregressive process.
For such dependent data, the loss function of each segment may
be defined as the log-likelihood loss associated with an autore-
gressive model, and a standard change detection algorithm such
as binary segmentation [22] is amenable to use with the loss
function. However, the loss function depends on a particular
parametric assumption of the autoregression noises, and it does
not always support efficient algorithms to minimize eM . In fact,
even if the noises are assumed to be Gaussian, the loss function
can lead to massive computations, as we shall discuss it in detail
later. To obtain the change points in a robust and computation-
ally efficient manner, we propose an alternative approach which
casts the change detection problem for the original time series
{yn} into that for segment-wise (asymptotically) independent
and identically distributed (i.i.d.) multivariate data {xn}. We
can discover the change points of independent data more easily,
and then use the results to infer the change points of the original
time series.

2) In Section III, we show that change points for a segment-
wise independent data {xn} can be discovered by minimiz-
ing (1) with quadratic loss function and appropriately designed
penalized methods. Specifically, we investigate necessary and
sufficient conditions under which the unknown true number of
change points can be determined for sufficiently large sample
size (almost surely).

Finally, we present experimental results to demonstrate the
performance of the proposed method on both synthetic and
real-world datasets. The real data experiments lead to interest-
ing conclusions about temporal variability of the summer-time
temperature over the Eastern US, and the most dominant factor
of ocean influence on climate.

Notation and Abbreviation: Let tr(·), (·)T , log, a.s., i.o. re-
spectively denote the trace of a square matrix, the transpose of a
matrix or vector, natural logarithm, almost surely, and infinitely
often. We write hN = Θ(gN ) if c < hN /gN < 1/c for some
constant c �= 0 for all sufficiently largeN . Let o(1) denote a de-
terministic sequence that converges to zero. We use op(1) and
Op(1) to respectively denote a sequence of random variables
that converges in probability to zero and that is stochastically
bounded. We write G ∼ [μ, V ] if distribution G has mean μ and
variance V . Let N (μ, V ) denote the multivariate normal dis-
tribution with mean μ and covariance matrix V . Throughout
the paper, random variables and observed data are respectively
represented by capital letters (e.g. Yn ) and small letters (e.g.
yn ). Vectors are all column vectors. We use →a.s. , →p , →d

to respectively denote the almost sure, in probability, and in
distribution convergence.

A generic change detection model assumes data to be the
outcomes of a sequence of multi-dimensional real-valued ran-
dom variables {Yn : n = 1, . . . , N} that consists of of M0 + 1
segments (M0 ∈ N ∪ {0}), where each pair of neighboring seg-
ments have different data generating process. In this paper,
Yn ’s are sometimes substituted with Xn ’s in order to empha-
size the independence of data. We denote the true segments
by {Yn : n = Lk−1 + 1, . . . , Lk}, k = 1, . . . ,M0 + 1, where
L1 < · · · < LM 0 are referred to as the M0 change points, and
by default L0 = 0, LM 0 +1 = N . Let Nk = Lk − Lk−1 , k =
1, . . . ,M0 + 1 denote the size (length) of the kth segment.
Clearly,

∑M 0 +1
k=1 Nk = N . Throughout the paper, we use M̂

to denote the estimated number of change points. Similarly, we
represent the detected change points by L̂k , k = 0, . . . , M̂ + 1,
and segment sizes by N̂k , k = 1, . . . , M̂ + 1.

II. CHANGE DETECTION FOR TIME SERIES WITH

DEPENDENCY STRUCTURE

In this section, we consider a sequence of one-dimensional
dependent data. The results can be readily extended to multi-
dimensional data. We assume that the data is generated from the
following segment-wise autoregressive (AR) model:

(M.1) The sequence {Yn : n = 1, . . . , N} are one-
dimensional and it consists of M0 + 1 segments, each of which
can be described by a linear autoregression. Additionally, the
autoregressive coefficients in two neighboring segments are
different (so that there areM0 change points). In other words, for
each k = 1, . . . ,M0 + 1, we have Yn = Y T

nψ
(k) + ε

(k)
n , n =

Lk−1 + 1, . . . , Lk ,where Y n = [1, Yn−1 , . . . , Yn−L ]T (forL >
0) or Y n = 1 (for L = 0), ψ(k) ∈ RL+1 (referred to as AR fil-
ter of orderL),ψ(k) �= ψ(k+1) for k = 1, . . . ,M0 ,Y1−L , . . . , Y0
have been used to denote initial values,Lk − Lk−1 = Θ(N) for
k = 1, . . . ,M0 + 1, and ε(k)

n are zero mean independent noises
which are identically distributed within each segment.

An autoregression of order L ∈ N ∪ {0} is also denoted by
AR(L). Note that we have assumed the same L in each segment
of the data generating model for the simplicity of presentation
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(clearly, any AR(�) is necessarily AR(k) for � < k <∞, so that
we may let L be the maximum of all the AR orders from each
segment). In the rest part of the paper, we assume that the order
L is known as prior knowledge or from exploratory studies.
Our goal is to identify the number of change points and their
locations.

Before we proceed, it is worth mentioning that even though
the above change detection model is semi-parametric since no
assumption on how each AR model switches to another one
was made, the change point analysis can serve as an exploratory
study for more parametric settings. For example, the detected
change points can be used to set up better initial values of
Expectation-Maximization algorithm for complex parametric
mixture models such as point process regression models [51]
and multi-state autoregressive models [52].

It is natural to define the loss function based on

Lossa(y�j −1 +1 , . . . , y�j ) =
�j∑

n=�j −1 +1

(yn − yT

n
ψ̂)2 (2)

where ψ̂ is estimated from y�j −1 +1 , . . . , y�j by Yule-Walker
equation or least squares method. The above loss is interpreted
as the cumulated prediction errors, or the rescaled negative log-
likelihood associated with AR(L). The quadratic loss can be
regarded as the special case when L = 0. We can find change
points by minimizing the sum of within-segment loss in (1)
using state-of-the-art algorithms such as binary segmentation
[22]. However, an alternative idea is to turn the change detection
of segment-wise autoregressive model into that of segment-wise
Gaussian independent model.

A. Discussion of the Underlying Ideas

Here we are following model (M.1). We start by consider-
ing a single AR to simplify the explanation of ideas. Following
that, we then consider the case of two or more AR’s. Con-
sider a sequence of N points that are generated from a single
AR(L), i.e. Yn = ψTY n + εn , where ψ ∈ RL+1 , εn ∼ [0, σ2 ].
Suppose that the true change points of {Yn : n = 1, . . . , N} are
located at multiples of w, where w > 2L is an integer, and the
data are divided into N/w segments of size w. If each segment
of data is used to estimate an AR(L) filter, we obtain N/w

estimates of ψ, respectively denoted by ψ̂1 , . . . , ψ̂N/w . It has

been well established that if ψ̂i is estimated from either least
squares or Yule Walker methods,

√
w(ψ̂i − ψ) converges in dis-

tribution to N (0,Γ) as w goes to infinity, where Γ is a constant
matrix depending only onψ [53, Appendix 7.5]. Thus, ψ̂i can be
approximated by multivariate Gaussian random variables with
mean ψ and variance Γ/w. The asymptotic independence of√
w(ψ̂i − ψ) are guaranteed by the following result.
Theorem 1: Suppose that {Y1 , . . . , YN } are generated from

an autoregression with filterψ. Let ψ̂1 ∈ RL+1 and ψ̂2 ∈ RL+1

respectively denote the estimated filters from {Y1 , . . . , YN1 } and
{YN1 +1 , . . . , YN } by least square methods, where N1 , N2 =
N −N1 → ∞ as N → ∞. Assume that

(A.1) the distribution of εn has a nontrivial absolutely contin-
uous component, and Eε4

n <∞, E[max{(log |εn |), 0}] <∞.
Then

√
N1(ψ̂1 − ψ) and

√
N2(ψ̂2 − ψ) converge to two

Gaussian random variables that are independent.

Algorithm 1: change detection by multi-window method.

input {yn ∈ R, n = 1, . . . , N}, L (lag order), Mmax (the
largest size of candidate models), w1 > · · · > wR
(window sizes)

output ĉp = {Î1 , . . . , ÎM̂ } (ranges containing change
points)

1: s(0)
n = 0, n = 1, . . . , N (initialized score)

2: for r = 1 → R do
3: Let Nr = N/wr . Estimate ψ̂nr ∈ RL+1 from

{Yn : n = (nr − 1)wr + 1, . . . , nrwr},
nr = 1, . . . , Nr .

4: Call Algo. 2 with input ψ̂nr : nr = 1, . . . , Nr , Mmax,
selected f(N), β(N), and obtain output �̂1 , . . . , �̂Mr

5: Define scores s(r)
n = s

(r−1)
n + 1

n∈⋃M r
k = 1 I

( r )
k

, n = 1,

. . . , N , where I(r)
k = [(�̂k − 1)wr + 1, (�̂k − 1)wr +

2, . . . , (�̂k + 1)wr ], and 1n∈A equals one if n belongs
to the set A and zero otherwise.

6: end for
7: Call Algo. 3 to obtain the peak ranges
ĉp = {Î1 , . . . , ÎM̂ } (M̂ ≤Mmax)

Assumption (A.1) is mild, as for instance, it is satisfied by the
Gaussian distribution. Theorem 1 implies that if a data from the
same autoregression is split into two (or more) parts, and each
part gives an estimate of the true filter, then the estimators are
asymptotically independent (up to a rescaling).

Now suppose that the stochastic process consists of two parts:
the first N1 points are generated from one AR(L) and the rest
N2 are from another AR(L). If a window size w that satisfies
2L < w < min{N1 , N2} is chosen, the estimated AR filters are
approximately independent points in RL+1 and they contain a
change point around the (N1/w)th point. Here and afterwards,
we assume that N1/w,N2/w are integers. Extension to more
general cases is straightforward. We therefore obtain a sequence
of (N1 +N2)/w ‘independent’ multivariate random variables,
with a change in mean at around the (N1/w)th point. We pro-
pose a multi-window (MW) change detection algorithm that
chooses different w’s and collect the information of the de-
tected change points for each w in a proper way, in order to
obtain a more accurate estimation of the change points of the
stochastic process. From a computational point of view, starting
from a large w also helps to reduce the cost, which is especially
helpful in cases where massive time series data is involved.

B. Algorithmic Descriptions

Algo. 1 is a pseudo-code for MW method, followed by two
subroutines: Algorithms 2 and 3. Illustrating experiments are
provided in Section IV. Algo. 1 uses a sequence of R window
sizes w1 > · · · > wR (discussed below) in order to capture any
true segment of small size. For each wr , the original data is
turned into a sequence of L+ 1 dimensional data that can be
approximated as independent. By calling Algo. 2, we obtain
a set of change points �̂1 , . . . , �̂M ; By further mapping these
change points back to the original scale {1, . . . , N}, we ob-
tain several short ranges (intervals) I(r)

k (each of size 2wr ) that
“probably” contain the desired change points. We repeat the
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Algorithm 2: (generic) change detection by minimizing the
sum of within-segment quadratic loss.

input {xn ∈ RD , n = 1, . . . , N}, M = Mmax ∈ N (the
largest candidate number of change points), f(N)
(penalty term), β(N) (minimal segment size)

output M̂ , �̂1 , . . . , �̂M̂ (discovered change points).
1: for k = 0 →Mmax do
2: Define �0 = 0, �k+1 = N ; minimize ek =∑k+1

j=1 Lossq (x�j −1 +1 , . . . , x�j ) over �j ∈ N and

record the optimum �̂j : j = 1, . . . , k, êk
3: if size of the smallest segment < β(N) then
4: Let M = k − 1; break the for loop
5: end if
6: end for
7: Choose M̂ = arg mink=0,...,M (êk + kf(N)), and {�̂j}

to be the solution to Step 2 under k = M̂ .

Algorithm 3: peak range selection.

input s(r)
n , n = 1, . . . , N, r = 1, . . . , R (recorded scores),
τ ∈ N ∪ {0} (tolerance level)

output ĉp = {Î1 , . . . , ÎM̂ } (the output of Algo. 1)
1: for r = R→ 1 do
2: Let S = maxn=1,...,N {s(r)

n }, and H = {n : s(r)
n ≥

S − τ}. Arrange the elements of H in ascending
order as {h1 , . . . , hp}

3: Initialize M ∗
r = 1, u1 = 1

4: for i = 2 → p− 1 do
5: if hi < hi+1 − 1 then
6: Let vM ∗

r
= hi , uM ∗

r +1 = hi+1
7: Let M ∗

r = M ∗
r + 1

8: end if
9: end for

10: Let vM ∗
r

= hp

11: From the above steps, we can rewrite H = ∪M ∗
r

m=1Jm ,
where each Jm is a peak range in the form of Jm =
[um + 1, um + 2, . . . , vm ],m = 1, . . . ,M ∗

r , where
the associated scores are at least S − τ

12: if M ∗
r ≤Mmax then

13: Let ĉp = H , namely M̂ = M ∗
r and Îm = Jm for

each m = 1, . . . , M̂ ; break the for loop
14: end if
15: end for

above procedure for different wr , and combine the information
in the following way: the detected ranges of change points from
each window size are scored by one, the scores are aggregated,
and the ranges with highest score or around the highest score
(determined by the tolerance parameter τ ) are finally selected.
The output of the algorithm is M̂ number of “peak” ranges that
are most likely to contain the true change points.

In the descriptions of the algorithms, two of the important pa-
rameters are briefly explained here and the detailed explanations
can be found in Section III. Parameter β(N) is introduced for
two purposes: for the technical convenience in deriving asymp-
totic results, and for faster implementation in practice. β(N)

must be selected such that limN→∞ β(N) = ∞. The penalty
function is a linear function in the form of kf(N), where f(N)
is referred to as the penalty term. The penalty terms f(N) ∝ 1,
f(N) ∝ log logN , and f(N) ∝ logN are referred to as the
variants of AIC, HQ, and BIC, respectively.

Some detailed discussions of Algo. 1 and its subroutines are
given below.

Algo. 1: In step 5, the score is introduced to facilitate the
selection of the final M̂ ranges. In particular, for each wr , the
detected ranges of change points from each window size are
scored by one, and otherwise by zero. Then the scores are ag-
gregated for all wr , and the ranges with highest score or around
the highest score (determined by τ ) are finally selected.

Algo. 2: This subroutine is called by Algo. 1 at Step 4. Its
input (Xn ) is the sequence of estimated AR filters from each
window (of size wr ) of the original time series (Yn ). It detects
the number and locations of change points based on minimizing
within-segment quadratic loss and applying penalized model
selection approach (with D = L+ 1). For clarity, we focus on
Algo. 1 in this section, and defer detailed discussions of Algo. 2
to Section III.

Algo. 3: This subroutine is called by Algo. 1 at Step 7. It aims
to select the narrow ranges with the highest scores, which are
most likely to contain change points. Note that sincew1 > w2 >
· · · > wR , one needs to go from wR to w1 in order to pick the
narrowest possible ranges. Steps 2–11 describe an algorithmic
procedure to partition the set H (of high score) into disjoint
intervals/ranges [um + 1, . . . , vm ]. Its “for” loop (from R to 1)
is a backward pruning procedure in order to ensure that M̂ ≤
Mmax. The pruning was done by neglecting scores produced
by the smallest window sizes, which are less reliable as the
estimated AR filters from those windows have larger variances.

Window Sizes: Intuitively speaking, more reliable change de-
tection results can be obtained by using multiple window sizes
(instead of only one), since in practice we do not know what the
true segment sizes are, and an inappropriately chosen wr may
be so large that a true segment is “missed”. On the other hand, a
small wr leads to larger variance of AR filter estimates. A prop-
erly designed MW method strikes a tradeoff between estimation
accuracy (since larger window sizes reduce variance of the es-
timated AR filters) and the resolution of the detected change
points (since smaller window sizes produce narrower ranges).
The specific choices of wr ’s may depend on the desired accu-
racy and budget of computing time. In general, we suggest that
R = Θ(logN),w1 = Θ(N),wR = Θ(L), andw1 > · · · > wR
is a geometric progression, based on our extensive synthetic data
experiments. We provide the complexity analysis in Section IV.

Computing the Estimator ψ̂nr : For a specified AR order L,
ψ̂nr can be obtained either by least squares method, or by the
Yule-Walker method (which requires slightly more data points,
but supports fast computation by, e.g., the Levinson-Durbin
recursion [54]).

Tolerance Parameter: The main purpose of introducing the
tolerance parameter τ in step 8 of Algo. 1 is to ensure that
the scoring produces fair comparisons among different ranges.
Otherwise, small segments may be “missed” by some initial
large window sizes. For example, suppose that τ = 0,w1 = 200
and there is only one true change point atN1 = 50 inN = 1000
data points. Then in this scenario, it is harder to discover a
change point from N/w1 = 5 estimated filters.
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It is worth mentioning that the output of MW method is a set
of M̂ narrow ranges instead of single points. In the cases where
M̂ exact change points are desired, we could use the results
from Algo. 1 as starting point to further search optimal points
within those ranges. In that sense, MW method can serve as a
fast prescreening approach. In addition, the multiple windows
can be implemented in parallel for massive time series, and it
can be applied to independent data as well.

C. Discussion on the Implementation of Algorithm 2

Implementations of Algo. 2 based on popular methods such
as binary segmentation [22], segment neighborhood [25], and
optimal partitioning [26], [27] are possible. But since our loss
function is quadratic, it is possible to have an algorithm that
takes full advantage of this fact. We propose such a computa-
tionally efficient algorithm, which is analogous to but also differs
from the usual k-means algorithm (in that each segment/cluster
contains points with consecutive indices). It can then be re-
garded as an “ordered k-means” algorithm. The algorithm re-
duces the within-segment quadratic loss in each step by moving
the change points based on the following result. Suppose that
{Xn : n = 1, . . . , N1} and {Xn : n = N1 + 1, . . . , N1 +N2}
are two segments. Consider the operation that shifts the change
point from N1 to N1 − t where 0 < t < N1 : the two segments
become {Xn : n = 1, . . . , N1 − t} and {Xn : n = N1 − t+
1, . . . , N1 +N2}. The within-segment quadratic loss will be
reduced after the operation if and only if

N1 |X̄0,N1 − X̄N1 −t,N1 |2
N1 − t

>
N2 |X̄N1 ,N1 +N2 − X̄N1 −t,N1 |2

N2 + t
,

(3)

where X̄n1 ,n2 denotes the sample mean of {Xn : n = n1 +
1, . . . , n2}.

From the above argument, in order to decide whether a sub-
sequence of data should be moved from one segment to its
neighboring one, it only suffices to compute its mean and
also the means of the original two segments. By iterative ap-
plication of the result, a local optimum of step 2 in Algo. 2
could be achieved. Specifically, suppose that k is the speci-
fied number of change points and we start with initialized k
segments (e.g. of equal sizes) located at �1 , . . . , �k . In each it-
eration, for j = 1, . . . , k, we find the point �̂j that minimizes
Lossq (x�j −1 +1 + x�̂j ) + Lossq (x�̂j +1 , . . . , x�j + 1 ) and substi-

tute �j with �̂j . Each iteration requires Θ(N) operations (mul-
tiplications and additions) by applying (3). Our synthetic data
experiments indicate that this greedy algorithm converges very
fast and reliably (usually achieves the global optimum). If the
number of iterations is finite, then the overall computational
cost is Θ(N). In our practical implementation, we specify a
finite number of iterations and repeat with a few different ran-
dom initial change points in order to enhance the possibility of
obtaining the global optimum.

To analyze the complexity (in terms of the number of multipli-
cations or additions), we assume that L andMmax are constants.
By straightforward calculations, the complexity of estimating
an AR filter from N data points by either Yule-Walker equation
or least squares method is Θ(N). Thus, BS method requires
the complexity Θ(k) + Θ(N − k) to scan the kth point, result-
ing in Θ(N 2) operations to scan all the N points. Since the

number of iterations is Mmax, and the complexity of the first it-
eration dominates that of the subsequent iterations, BS method
has complexity Θ(N 2). On the other hand, for each window
sizew in MW method, the major computational cost is in Step 3
of Algo. 1 which is (N/w)Θ(w) = Θ(N), and in Step 4 which
is finde(N/w), where finde(n) represents the complexity of
Algo. 2 given n data points. Therefore, the complexity of MW
method can be expressed as fde(N) = Θ(N) + finde(N/wR )
(wR is the smallest window size). If Algo. 2 implements the
method proposed above, then in accordance with the com-
plexity analysis there, we obtain finde(N/wR ) = Θ(N/wR )
and fde(N) = Θ(N +N/wR ) = Θ(N). Moreover, if an an-
alyst needs exact k change points that minimize the sum of
within-segment loss defined in (2), he may carry out an ex-
act search based upon the results from Algo. 1. Suppose that
Algo. 1 outputs k intervals of size wR , the additional computa-
tional cost is Θ(wk

RN) which can be far below Θ(N 2) required
by BS method.

III. STRONG CONSISTENCY OF PENALIZED METHODS

Recall from Subsection II-A and II-B that the key idea of our
methodology is to transform segment-wise autoregression into
segment-wise asymptotically independent (multivariate) data.
Fast implementation is then achieved, because 1) we can apply
the efficient subroutine Algo. 2 (elaborated in Subsection II-C),
and 2) we can implement the for loop in Algo. 1 in parallel (for
different window sizes/resolutions).

In particular, the input of Algo. 2 is the sequence of estimated
AR filters (of dimension L+ 1) from each window of the orig-
inal time series (Yn ). In other words, each window gives an
estimate of the true filter, and then the estimators are asymptot-
ically independent (up to a rescaling).

Since the performance (in terms of accurately discovering the
locations and number of changes) of our MW method largely
depends on the subroutine Algo. 2, we only focus on Algo. 2
in this section. Under assumption (M.1), the asymptotically in-
dependence motivates us to analyze a relaxed problem under
assumption (M.2), where {Xn} is a sequence of independent
random variables. Note that even under assumption (M.2), the
problem is still technically highly non-trivial. We make the fol-
lowing assumption on the input of Algo. 2, denoted by {Xn}
(with dimension D = L+ 1).

(M.2) The sequence {Xn : n = 1, . . . , N} are D-dimen-
sional (D ∈ N) and independent random variables. More-
over, for each k = 1, . . . ,M0 + 1, we have Nk = Θ(N), and
{Xn : n = Lk−1 + 1, . . . , Lk} are i.i.d. distributed according
to Gk ∼ [μk , Vk ]. When M0 ≥ 1, μk �= μk+1 , k = 1, . . . ,M0 .

Algo. 2 discovers change points by minimizing the within-
segment sum of quadratic loss ek . Algo. 2 computes êk for each
candidate number of change points k = {0, . . . ,M}, where M
is determined by the largest candidate number of segmentsMmax
and minimal segment length β(N). After that, the optimal num-
ber of change points M̂ is estimated according to a penalized
method. Further details are given below. In the remaining sub-
sections, we shall show that when applied to a segment-wise
independent data, Algo. 2 outputs M̂ such that M̂ →a.s. M0 as
data size tends to infinity.

Parameter β(N): It is introduced for two purposes: for the
technical convenience in deriving asymptotic results, and for
faster implementation in practice. β(N) must be selected such
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that limN→∞ β(N) = ∞. The rate of growth of β(N) will be
selected depending on the theoretical results we wish to prove.

Penalty Function: The common choice of penalty function is
a linear function in the form of kf(N), where f(N) is referred
to as the penalty term. For brevity, we consider the linear func-
tion in this paper, but the results can be applied to more general
penalty functions. Three commonly used types of penalty terms
are related to AIC, HQ, and BIC. In a parametric change detec-
tion problem, if there are k change points and p parameters in
each segment, the total number of parameters to appear in AIC
and BIC is k + p(k + 1). If the quadratic loss is treated as twice
the negative log-likelihood of a Gaussian probability density
function with variance equal to the identity matrix, the total num-
ber of parameters is k +D(k + 1) = k(D + 1) + constant.
The penalty terms f(N) ∝ 1, f(N) ∝ log logN , and f(N) ∝
logN are referred to as the variants of AIC, HQ, and BIC,
respectively.

Strong Consistency: A penalized model selection approach is
referred to be strongly consistent if M̂ →a.s. M0 as data size
tends to infinity. We may also say that M̂ is strongly consistent.

A. Necessary Conditions for Strongly Consistent
Model Selection

We start by examining the case when the true data generating
process has no change point.

Theorem 2: Assume that the data generating model is given
by (M.2) with M0 ≥ 0. Then the smallest penalty term f(N)
that guarantees strong consistency of M̂ in Algo. 2 is at least
Θ(log logN).

If we additionally assume M0 = 0 and β(N) = Θ(N), then
there exists a constant C > 0 such that f(N) = C log logN
guarantees strong consistency of M̂ .

Remark 1: Theorem 2 proves that the smallest penalty for
strong consistency is Θ(log logN) (given by variants of HQ cri-
terion). A by-product of its proof is a technical lemma (Lemma 1
in the Appendix) that implies that an AIC-like criterion (with
constant penalty) always produces a non-vanishing overfitting
probability. We recap this observation after Lemma 1. Interest-
ingly, these observations are similar to those found for order
selection of autoregressive models, even though an autoregres-
sive model is purely parametric, and the proof in those cases
require different technical approaches [38], [55].

Theorem 2 also proves that f(N) = Θ(log logN) is suffi-
cient for strong consistency in the particular case M0 = 0. The
next theorem shows that the necessary condition is also suffi-
cient for bounding the estimated number of change points when
M0 > 0.

We define

Δ̄μ = max
k=1,...,M 0

{|μk − μk+1 |}, Δμ = min
k=1,...,M 0

{|μk − μk+1 |}.

Theorem 3: Under the model assumption (M.2) with
M0 > 0, suppose that β(N) = Θ(N) and

(A.2) The largest candidate number of change points Mmax is
finite and Mmax ≥M0 + 3,

(A.3) The true segment sizes satisfy β(N) ≤ Nk/4, Nk =
Θ(N) for k = 1, . . . ,M0 + 1. In addition, f(N) = o(N).

Then there exists a positive constant C0 such that whenever
f(N) ≥ C0 log logN , the estimated number M̂ satisfiesM0 ≤

M̂ ≤ 2M0 for sufficiently large N almost surely, i.e.,

pr
{

lim sup
N→∞

(M̂ < M0) ∪ (M̂ > 2M0)
}

= 0.

Moreover, the distances between the estimated change points
and true ones satisfy

lim sup
N→∞

min
k=1,...,M̂

|L̂k − Lj |
2β(N)

≤ 1 (a.s.) (4)

for each j = 1, . . . ,M0 .
Remark 2: The requirement Mmax ≥M0 + 3 (instead of

Mmax ≥M0) in (A.2) is for technical convenience in the proof
of Theorem 3. Theorem 3 shows that f(N) = Θ(log logN)
suffices to guarantee no underfitting. Although we cannot prove
it avoids overfitting as well, we proved that the extent of over-
fitting is bounded (since M̂ ≤ 2M0 holds almost surely). In
addition, Inequality (4) implies that each true change point is
“almost” captured, since its nearest discovered change point is
within distance β(N), which can be chosen to be arbitrarily
small compared with N (or each Nj ). In the next subsection,
we relax the assumption on β(N) and obtain strongly consistent
M̂ by increasing the penalty to be BIC-like.

B. Sufficient Conditions for Strongly Consistent
Model Selection

Suppose that {Xn : n = 1, . . . , N} are i.i.d. sub-Gaussian
random variables. Then there is some c0 > 0 such that for every
a ∈ R,

pr(|X̄ − E(X1)| ≥ a) ≤ 2e−c0 a
2N (5)

where X̄ denotes the sample mean. Assuming that Xn follows
a sub-Gaussian distribution, it is possible to prove the strong
consistency of M̂ . The assumption is for bounding the tail prob-
ability through the large deviation analysis [56]–[57].

Theorem 4: Under the model assumption (M.2) with M0 ≥
0, suppose that Assumptions (A.2), (A.3) in Theorem 3 hold
and that

(A.4) Gk , k = 1, . . . ,M0 + 1 are marginally sub-Gaussian.
In other words, there exists a constant c0 > 0 such that (5) holds
for each marginal distribution of Gk .

If

f(N) ≥ 100Δ̄2
μη

∗(N), (6)

where η∗(N)= 250DcM 0 −1 logN/(c0Δ2
μ), c =4/(

√
2 − 1)2 ,

then M̂ is strongly consistent. Moreover,

lim sup
N→∞

(
max

k=1,...,M 0

|L̂k − Lk |
η∗(N)

)
≤ 1 (a.s.)

Remark 3: Assumption (A.4) is satisfied by Gaussian, any
bounded random variables, etc. By the conditions of Theorem 4,
both the minimal distance and the minimal penalty required for
strong consistency are no more than Θ(logN). Note that we do
not need the requirement β(N) = Θ(N). The constant term for
f(N) is proportional to the dimension D and the ratio Δ̄2

μ/Δ
2
μ .

Intuitively, higher dimension and larger variation in |μk − μk+1 |
require stronger penalties. Besides this, it is interesting to ob-
serve that f(N) depends on the ratio Δ̄2

μ/Δ
2
μ which is scale
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Fig. 1. (a) A sequence of independent data that contains two change points, and
(b) the frequencies of discovered change points for each N = 100, 300, 1000.

invariant, while η∗(N) only depends on the smallest distance
between two neighboring distributions (in terms of the means).

IV. EXPERIMENTS

In this section, we present experimental results to demonstrate
the above theoretical results, and the advantages of MW method
on both synthetic and real-world datasets.

A. Independent Data

In a synthetic data experiment, we generated data of
two change points: Xn ∼ N (μ1 , σ

2), n = 1, . . . , 0.2N , Xn ∼
N (μ2 , σ

2), n = 0.2N + 1, . . . , 0.8N , Xn ∼ N (μ3 , σ
2), n =

0.8N + 1, . . . , N . Let [μ1 , μ2 , μ3 , σ
2 ] = [−1, 0, 1, 1], Mmax =

10, f(N) = 2 logN , β(N) = log logN . For illustration pur-
pose, an example dataset with N = 100 is plotted in Fig. 1(a).
For each N = 100, 500, 1000, we generate 100 independent
datasets and summarize the detected change points (normalized
by N ) in Fig. 1(b). We also summarized the percentage fre-
quencies of M̂ < 2, M̂ = 2, and M̂ > 2, respectively denoted
by f = (f1 , f2 , f3). They are f = (38, 60, 2) for N = 100,
f = (0, 89, 11) forN = 300, and f = (0, 95, 5) forN = 1000.
The results show that both the estimated number of and loca-
tions of change points become more and more accurate as the
sample size grows.

B. Dependent Data

In a synthetic data experiment for dependent data, we
generated data of two change points at 0.1N and 0.3N .
Data is generated from a zero mean autoregression in
each of the three segments, and the associated AR fil-
ters are respectively [ψ(1)

1 , ψ
(1)
2 ] = [0.8,−0.3], [ψ(2)

1 , ψ
(2)
2 ] =

[−0.5, 0.1], [ψ(3)
1 , ψ

(3)
2 ] = [0.5,−0.5]. Suppose that the noises

are N (0, 1) and Mmax = 5, f(N) = logN , τ = 1. Fig. 2(a) il-
lustrates one dataset withN = 1000. We set window sizes to be
[w1 , w2 , w3 , w4 ] = [100, 50, 20, 10] and apply Algo. 1 to that
dataset. The score is plotted in Fig. 2(b).

Next, we compare MW method with binary segmentation
(BS) method (which is perhaps the most widely applied ap-

Fig. 2. (a) A time series that consists of three segments of various autoregres-
sions, and (b) score plot for change detection.

Fig. 3. (a) Frequencies of detected change points (or its ranges) by BS and
MW methods, and (b) log-log plot of the computation time on multiple change
points analysis.

proach in the literature). The BS method first scans all the points
and finds a single change point that minimizes the sum of within-
segment loss defined in (2), and then extends to multiple change
points discovery by iteratively repeating the method on differ-
ent subsets of the series. This procedure is repeated until the
maximal number of change points is reached or no more change
point is detected.

To numerically compare the performance of MW and BS,
we repeat the above experiment for 50 iterations. In each itera-
tion, we generated three autoregressive filters of order L = 2
that are independent and uniformly distributed in the space
of all stable AR(2) filters.1 The change points are still 0.1N
and 0.3N . The number of points is N = 104 . The discov-
ered change points are plotted in Fig. 3(a). In order to com-
pare the computational speed, we repeat the above experi-
ment for each N = [103 , 5 × 103 , 104 , 5 × 104 , 105]. For the
MW method, we use fixed number of windows {wr}4

r=1 =
N/10, N/20, N/50, N/100 and tolerance parameter τ = 2. We
set the minimal length for BS method to be 10L (which is
used to guarantee stability involved in matrix computations).
For both methods, Mmax = 4. The comparison is plotted in
Fig. 3(b). The average numbers of detected change points (with

1In general, for a stationary AR(L) processes with coefficients ψ =
[ψ1 , . . . , ψL ],ψ stays in a bounded subspace SL ⊂ RL . For the purpose of fair
comparison, in the experiment we draw AR filters that are uniformly distributed
on SL , using the technique proposed in [58].
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Fig. 4. (a) 1895-2015 summer-time temperature over the Eastern US (unit:
◦C), and (b) its sample partial autocorrelations.

standard error inside the parenthesis) under each N are respec-
tively 2.48(0.12), 1.98(0.04), 1.98(0.03), 1.98(0.04) for MW
method, and 2.56(0.12), 3.2(0.11), 3.46(0.14), 3.7(0.14) for
BS method. Here, if a discovered range has size no larger than
twice the smallest window size and it contains a true change
point, it is regarded as a successfully detected change point.

The simulation results shows that MW is more robust and
computationally efficient than BS method. As was pointed out
in the previous section, MW is robust because it looks into the
data at different resolutions, thus reducing the risks of overfitting
or underfitting (which the BS method suffers from).

C. Eastern US Temperature From 1895 to 2015

In this subsection, we investigate the temporal variability of
the summer-time temperature over the Eastern US for 1895-
2015 (121 points plotted in Fig. 4(a)) with our change detec-
tion algorithm. The temperature data is obtained from National
Climatic Data Center (NCDC, http://www.ncdc.noaa.gov/) and
averaged over the Eastern US (east of 100 ◦W). Fig. 4 shows
the data and its sample partial autocorrelations, from which we
recognize the data as independent. We choose Mmax = 7, and
try a range of penalty terms f(N) = j log logN, j = 1, ..., 5.
We start with j = 1, 2; the penalty is so small that it gives the
maximally possible 7 change points. Then we increase f(N)
to 3 log logN , and obtain 5 change points at years 1901, 1929,
1944, 2009, 2012 (marked in solid lines in Fig. 5(a)). If f(N) is
increased to 4 log logN , the change points are the years 1929,
1944, 2004 (marked in dashed lines in Fig. 5(a)). If f(N) is
further increased to j log logN, j ≥ 5, there is no change point
detected. The segmentation of the time series of the Eastern US
temperature over the past century matches the phase shift of the
Atlantic Multi-decadal Oscillation (AMO), defined as the North
Atlantic sea surface temperature after removing the long-term
warming trend [59]. As seen from Fig. 5(b), since the early 20th
century, there are warm phases from 1929 to 1960 and from
1990 to 2015, and cool phases from 1901 to 1929 and from
1965 to 1990, in synchrony with the segmentation of the East-
ern US temperature time series defined by the change points. As
the ocean has much larger heat capacity than the continent, this
implies that the multi-decadal variability of Eastern US tem-

Fig. 5. (a) Detected change points of the Eastern US temperature, and
(b) phase shifts of the AMO.

Fig. 6. (a) Monthly El Nino (Nino3) index from 1854 to 2015, and (b) its
sample partial autocorrelations.

perature is modulated by the AMO. The dynamic link between
AMO and Eastern US climate has previously been reported. For
example, based upon a global climate model, it was indicated in
[59], [60] that the AMO plays an important role in driving the
summer-time temperature in the Eastern US. This validates our
conclusion derived from the change point detection algorithm.

D. El Nino Data From 1854 to 2015

As the largest climate pattern, El Nino serves as the most
dominant factor of oceanic influence on climate. The NINO3
index, defined as the area averaged sea surface temperature
from 5 ◦S–5 ◦N and 150 ◦W–90 ◦W, is calculated from
HadISST1 from 1854 to 2015 [61], as shown in Fig. 6(a)
(with 1944 points). By looking at the partial autocorrelation
of the complete dataset in Fig. 6(b), we tentatively set au-
toregression order L = 2 (in fact, we also experimented the
cases L = 3, 4, 5 and the final results did not differ much). We
apply Algo. 1 with window sizes 300, 250, 200, 150, 100, 50,
and Mmax = �N/300 − 1� = 5 (where�a� denotes the largest
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Fig. 7. (a) Score plot of El Nino data obtained from Algo. 1 which indicates the
ranges of change points, and (b) the trace plot that illustrates how the coefficients
of AR(2) vary with time.

integer that is no larger than a). We start with f(N) =
2 log logN and obtain the score plot as shown in Fig. 7(a).
The plots show that the time period from June 1979 to Septem-
ber 1987 most likely contains one change point. We change the
penalty to smaller or larger values, or use other window sizes,
and found that the range is detected most of the time. In fact,
we can trace how the AR coefficients change in Fig. 7(b), where
each point is the AR coefficient estimated from a sliding window
of size 300 and sliding step size 20. In other words, the win-
dows are {X1 , . . . , X300}, . . . , {X1641 , . . . , X1941}. The green
diamond, blue star, and red circle indicate respectively the first
37 windows, the second 37 windows, and the last 9 windows. As
illustrated from the plot, the red circles deviate nontrivially from
other points, which means that the data has a structural change
after 74 windows, and that time is exactly the year 1979. The
shift of the Pacific Decadal Oscillation (PDO) from a long cold
phase (1940–1978) to a warm phase (1979-present) is likely to
explain why this year is unique in the past 150 years. The PDO
can have a strong influence on the climate in the Northern hemi-
sphere, including the drought frequency in the North America
[62], ecosystem productivity [63], as well as the Bermuda High
pressure system in Atlantic ocean [64] .

V. CONCLUSION

This work investigated the necessary and sufficient conditions
under which a model selection criterion is strongly consistent.
Our analysis is under the assumption of the independence of
data, and for the quadratic loss function. Nevertheless, it ap-
pears that our proposed technical tools can be applied to study-
ing richer data structures. Furthermore, we modeled a general
stochastic process by segment-wise autoregressions, and pro-
posed an effective and efficient multi-window technique for
change detection. Generalization to other loss functions or pro-
cedures is possible and will be considered in future works.

APPENDIX

LetS(k)
n1 :n2 =

∑Lk −1 +n2
n=Lk −1 +n1 +1(Xn − μk ), andS(k) = S

(k)
0:Nk

.

Let S(k1 ,k2 )
n1 :n2 = S

(k1 )
n1 :Nk 1

+ S(k1 +1) + · · · + S(k2 −1) + S
(k2 )
0:n2

for

k1 < k2 and S(k1 ,k2 )
n1 :n2 = S

(k1 )
n1 :n2 for k1 = k2 .

We define the within-segment loss Q
(k)
n1 :n2 = Lossq

(xLk −1 +n1 +1 , . . . , xLk −1 +n2 ), and the cross-segment loss

Fig. 8. Illustration of some frequently used notations in the proofs.

Q
(k1 ,k2 )
n1 :n2 = Lossq (xLk 1 −1 +n1 +1 , . . . , xLk 2 −1 +n2 ). Let

g(k1 ,k2 ,k3 )
n1 ,n2 ,n3

= Q(k1 ,k3 )
n1 :n3

− (Q(k1 ,k2 )
n1 :n2

+Q(k2 ,k3 )
n2 :n3

), (7)

referred to as the decomposition gain. In the case of k1 = k2 <

k3 , n2 = Nk1 , we denote g(k1 ,k2 ,k3 )
n1 ,n2 ,n3 by g(k1 ,k3 )

n1 ,n3 ; In the case of

k1 = k2 = k3 , we denote g(k1 ,k2 ,k3 )
n1 ,n2 ,n3 by g(k1 )

n1 ,n2 ,n3 . If n1 ≥ n2
or n2 ≥ n3 in the above definitions, the corresponding values
are understood to be zeros. For each d = 1, . . . , D, letXn,d and

S
(k)
n1 :n2 ,d

denote the dth component of Xn and S(k)
n1 :n2 , respec-

tively. Recall that the quadratic loss Q can also be interpreted
as the negative log-likelihood of fitting a Gaussian distribution.
Since the goodness of fit is improved by fitting two instead of
one Gaussian, the decomposition gain g is always nonnegative.
Figure 8 is an illustration of some frequently used notations used
in the proofs.

Technical Lemmas: Lemma 1 proves the asymptotic distribu-
tion of a decomposition gain and its tight almost sure bound.

Lemma 1: Suppose that {Xn : n = 1, . . . , N1} and {Xn :
n = N1 + 1, . . . , N} are independent random variables from
the same distribution G, with mean μ and variance V . Let
N2 = N −N1 . Assume that N1 , N2 → ∞ as N → ∞, and
N1 , N2 depend only on N . Then g

(1,2)
0,N2

(the decomposition
gain) converges in distribution to ZTV Z, where Z ∈ ND (0, I).
Moreover,

lim sup
N→∞

g
(1,2)
0,N2

log log(min{N1 , N2}) = C (a.s.) (8)

for some positive constant C ≤ 8 tr(V ).
Proof: Let p1

Δ= N1/N, p2
Δ= 1 − p1 . By direct calculation,

we obtain

g
(1,2)
0,N2

=

∣∣∣∣∣

√
p2

N1

N1∑

n=1

Xn −
√
p1

N2

N∑

n=N1 +1

Xn

∣∣∣∣∣

2

. (9)
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Let Y (k)
N

Δ= S
(k)
0:Nk

/
√
Nk , k = 1, 2. By the central limit theo-

rem (CLT), Y (1)
N , Y

(2)
N converge in distribution to two inde-

pendent ND (0, V ) random variables, respectively denoted by
Y (1) , Y (2) . Therefore,

√
p2Y

(1)
N −√

p1Y
(2)
N =

√
p2Y

(1) −√
p1Y

(2) + op(1)

converges in distribution to a random variable W ∼ ND (0, V ).
Let W = V 1/2Z, then Z ∼ ND (0, I). It follows that g(1,2)

0,N2

converges to ZTV Z. Furthermore, by the law of the iterated
logarithm, for all k = 1, 2, d = 1, . . . , D,

lim sup
Nk →∞

Y
(k)
N,d/

√
2Vdd log logNk = 1, (a.s.), (10)

where Y (k)
N,d and Vdd denote the dth entry of Y (k)

N and the (d, d)th

entry of V , respectively. Note that |√p2Y
(1)
N,1 −

√
p1Y

(2)
N,1 |2 ≤

g
(1,2)
0,N2

≤∑D
d=1{

√
p2 |Y (1)

N,d | +
√
p1 |Y (2)

N,d |}2 , where the second
inequality follows from triangle inequality. We infer from (10)
that for any fixed δ ∈ (0, 1),

lim sup
N→∞

g
(1,2)
0,N2

[
D∑

d=1

(√
2p2Cd,1 +

√
2p1Cd,2

)2
]−1

≤ 1 a.s.,

(11)

g
(1,2)
0,N2

≥
(√

2p2δC1,1 +
√

2p1δC1,2

)2
i.o. (12)

for sufficiently large N . where Cd,1
Δ= Vdd log logN1 , Cd,2

Δ=
Vdd log logN2 . From (12), it is easy to observe (with δ = 1/2)
that

g
(1,2)
0,N2

> V11 log log(min{N1 , N2}) i.o. (13)

It can be proved that for any n2 ≥ n1 ≥ 34,

n1

n1 + n2
log log(n2) ≤ 1

2
log log(n1). (14)

It follows from (11) and (14) that

lim sup
N→∞

g
(1,2)
0,N2

[
8 tr(V ) log log(min{N1 , N2})

]−1

≤ 1 (a.s.)

(15)
Furthermore, (13) and (15) imply the desired (8). �

Remark 4: Lemma 1 implies that splitting a sequence of i.i.d.
points into two halves increases the goodness of fit (measured by
quadratic loss) byOp(1). Therefore, an AIC-like criterion (with
constant penalty) always produces a non-vanishing overfitting
probability.

Lemma 2 proves that there would be a large decomposition
gain if the the identified change points are far away from the true
change points. It is to be used in the proof of no underfitting.

Lemma 2: Under model assumption (M.2), for any j ∈
{1, . . . ,M0} and n1 , n2 satisfying N−1

j n1 , N
−1
j+1n2 ∈ [c−1 , 1],

where c > 1 is some constant, we have

g
(j,j+1)
Nj −n1 ,n2

>
1
3
|μj − μj+1 |2 min{n1 , n2} (16)

for sufficiently large N almost surely.

Proof: From Equation (9) (note that its derivation does not
require the two segments to have the same mean), we obtain

g
(j,j+1)
Nj −n1 ,n2

=
∣∣∣∣

√
n2

n
Y (1)−

√
n1

n
Y (2) +

√
n1n2

n
(μj − μj+1)

∣∣∣∣
2

,

where n = n1 + n2 , Y (1) =
∑Lj

i=Lj −n1 +1(Xi − μj )/
√
n1 ,

Y (2) =
∑Lj +n2

i=Lj +1(Xi − μj+1)/
√
n2 . By triangle inequality

g
(j,j+1)
Nj −n1 ,n2

≥ (|B| − |A|)2 , where

A =
√
n2

n
Y (1) −

√
n1

n
Y (2) , B =

√
n1n2

n
(μj − μj+1).

By Strassen’s invariance principle [66, Chapter 5], for each
individual ω in a set of probability one, for each d = 1, . . . , D

lim sup
Nj→∞

∑Lj

i=Lj −n1 (ω )+1(Xi,d(ω) − μj,d)
√

2Vj,ddNj log logNj

≤ 1,

and a similar inequality holds that replaces j by j + 1. This
implies that

Y
(1)
d (ω)√

2Vj,dd log log n1
,

Y
(2)
d (ω)√

2Vj+1,dd log log n2
≤ √

c+ 1

for sufficiently large N (thus Nj ,Nj+1). For brevity, we

have simplified n1(ω), n2(ω) to n1 , n2 . Let vd
Δ= max{Vj,dd ,

Vj+1,dd}. From the above inequalities and (14),

|A|2 <
D∑

d=1

8(c+ 1)vd log log(min{n1 , n2}) (17)

for sufficiently large N almost surely. Then it follows from

|B| =
√
n1n2

n
|μj − μj+1 | ≥

√
min{n1 , n2}

2
|μj − μj+1 |

that (16) holds. �
Proof of Theorem 1: For the case L = 0, {Yn : n =

1, . . . , N} are independent, and ψ̂1 =
∑N1

n=1 Yn/N1 , ψ̂2 =∑N
n=N−N2 +1 Yn/N2 . Thus,

√
N1(ψ̂1 − ψ) and

√
N2(ψ̂2 −

ψ) converge to Gaussian random variables that are inde-
pendent. It remains to prove for the case L > 0. Choose
N

′
1 , N

′
2 such that N

′
1/N1 , N

′
2/N2 → 1, N1 −N

′
1 , N2 −N

′
2 →

∞. Let ψ̂
′
1 , ψ̂

′
2 ∈ RL+1 respectively denote the estimated fil-

ters from {X1 , · · · ,XN
′
1
} and {XN−N ′

2 +1 , · · · ,XN } using

the least squares method. It is well known that
√
N

′
1(ψ̂

′
1 −

ψ),
√
N

′
2(ψ̂

′
2 − ψ) respectively converge in distribution to

Z1 , Z2 ∼ N (0, σ2(Γ∗
L )−1), where (Γ∗

L = 1
0

0
ΓL

) and ΓL is the
covariance matrix of orderL [53, Appendix 7.5]. BecauseXn is
strongly mixing under Assumption (A.1) [66],

√
N

′
1(ψ̂

′
1 − ψ)

and
√
N

′
2(ψ̂

′
2 − ψ) are asymptotically independent. Thus, Z1

and Z2 are independent. To prove that
√
N1(ψ̂1 − ψ) and√

N2(ψ̂2 − ψ) are asymptotically independent, by Slutsky’ the-
orem, it remains to prove that

√
N1(ψ̂1 − ψ) =

√
N

′
1(ψ̂

′
1 − ψ) + op(1), (18)

√
N2(ψ̂2 − ψ) =

√
N

′
2(ψ̂

′
2 − ψ) + op(1). (19)
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We prove the former equation since the latter one can
be similarly proved. Let Z1 denote the (N1 − L) × L ma-

trix whose (i, j)th element is yN1 +1−i,N+1−i−j , and W1
Δ=

[yN1 , . . . , yL+1]T , E1
Δ= [εN1 , . . . , εL+1]T . Since ψ̂1 is esti-

mated from least squares method, it can be written in the ma-
trix form ψ̂1 = (ZT

1 Z1)−1ZT
1 W1 = ψ1 + (ZT

1 Z1)−1ZT
1 E1 . We

similarly define Z
′
1 ,W

′
1 , E

′
1 by substituting N1 with N

′
1 , and

write ψ̂
′
1 = ψ1 + {(Z ′

1)
TZ

′
1}−1(Z

′
1)

TE
′
1 . Therefore,

√
N1(ψ̂1 − ψ1) =

(
ZT

1 Z1

N1

)−1
ZT

1 E1√
N1

, (20)

√
N1(ψ̂

′
1 − ψ1) =

{
(Z

′
1)

T (Z
′
1)

N1

}−1 (Z
′
1)

TE
′
1√

N1
. (21)

Let ΓL denote the covariance matrix of order L. Recall that as
N → ∞,

ZT
1 Z1

N1
,

(Z
′
1)

TZ
′
1

N
′
1

,
ZT

1 Z1 − (Z
′
1)

TZ
′
1

N1 −N
′
1

→p Γ∗
L

ZT
1 E1√
N1

,
(Z

′
1)

TE
′
1√

N
′
1

,
ZT

1 E1 − (Z
′
1)

TE
′
1√

N1 −N
′
1

→d N (0, σ2Γ∗
L ) (22)

due to the central limit theorem for martingale difference se-
quences [53, Appendix 7.5]. Therefore,

(Z
′
1)

TE
′
1√

N1
=
ZT

1 E1 +
√
N1 −N

′
1Op(1)√

N1
=
ZT

1 E1√
N1

+ op(1),

and (20) further implies
√
N1(ψ̂1 − ψ1) = Op(1) and

√
N1(ψ̂

′
1 − ψ1) =

{
(Z

′
1)

T (Z
′
1)

N1

}−1
ZT

1 E1√
N1

+ op(1). (23)

Straightforward calculations using (20) and (23) give
√
N1(ψ̂1 − ψ) −

√
N

′
1(ψ̂

′
1 − ψ) = τ Op(1) + op(1).

where τ
Δ=
(
ZT

1 Z1

N1

)−1

−
(

(Z
′
1)

T (Z
′
1)

N1

)−1

It remains to prove that τ = op(1). In fact, from (22),

τ =
N1

N
′
1

{
(Z

′
1)

T (Z
′
1)

N
′
1

}−1
N

′
1 −N1

N1

{
ZT

1 Z1 − (Z
′
1)

T (Z
′
1)

N1 −N
′
1

}

(
ZT

1 Z1

N
′
1

)−1

= op(1).

Proof of Theorem 2: We first prove that f(N) should be at
least Θ(log logN) to ensure strong consistency for anyM0 ≥ 0.
We prove for the case M0 = 0, and its proof can be straight-
forwardly extended to M0 > 0. The event M̂ = 0 implies
the event Q(1)

0:N/2 +Q
(1)
N/2,N + f(N) ≥ Q

(1)
0:N . In other words,

g
(1)
0,N/2,N > f(N) implies the event M̂ �= 0. By Lemma 1, there

exists C1 > 0 such that g(1)
0,N/2,N ≥ C1 log logN i.o. This im-

plies that if f(N) < C1 log logN , then g(1)
0,N/2,N > f(N) i.o.

and thus M̂ �= M i.o.

Next, we prove that Θ(log logN) is sufficient for strong con-
sistency whenM0 = 0. The event M̂ > 0 implies the event that
there exist 0 < n1 < n2 such that g(1)

0,n1 ,n2
≥ f(N) and that

n1 , n2 − n1 ≥ β(N) = Θ(N). By a similar derivation to (17)
in Lemma 2, we can show that for sufficiently large N

g
(1)
0,n1 ,n2

< 8(c+ 1)tr(V1) log logN (a.s.) (24)

where c > 1 is some constant. Thus, given that f(N) =
C2 log logN for large enoughC2 > 0, g(1)

0,n1 ,n2
< f(N) for suf-

ficiently large N almost surely. This implies that M̂ →a.s. 0 as
N → ∞.

Proof of Theorem 3: We first prove that there is no under-
fitting, i.e. M̂ ≥M0 . It suffices to prove that for each ω
from a set of probability one, there exists a positive inte-
ger Nω such that for all N > Nω , M̂ �= m for each m =
1, . . . ,M0 − 1. We prove the result by contradiction. Assume
that M̂ = m < M0 . Then there exists at least one detected
segment that consists of points from at least two neighbor-
ing segments, say the (j − 1)th and jth, and that the num-
bers of points from the two segments are at least Nj−1/2
and Nj/2, respectively. Without loss of generality, we assume
N1 , . . . , NM 0 +1 to be even. In other words, the points {Xn :
n = Lj−1 −Nj−1/2 + 1, . . . , Lj−1 +Nj/2} are contained in
the kth detected segment for some k = 1, . . . ,m+ 1. Follow-
ing the notation of Algo. 2, let êm denote the minimal within-
segment quadratic loss given m segments. We consider another
configuration of change points: for the set of change points that
give êm , keep all other segments except for the kth segment
unchanged, and split the kth segment into four segments the
middle two of which are {XLj −1 −Nj −1 /4+1 , . . . , XLj −1 } and
{XLj −1 +1 , . . . , XLj −1 +Nj /4}. Then the number of segments
will increase fromm tom+ 3, and we obtain from Lemma 2 that
for sufficiently largeN , the increased within-segment quadratic
loss is larger than C1 min{Nj−1 , Nj} almost surely, where the
constant C1 = Δ2

μ/12. Since êm+3 is the global minimum of
the within-segment quadratic loss under m+ 3 change points,
we obtain

êm − êm+3 > C1 min{Nj−1 , Nj} (a.s.) (25)

On the other hand, because m+ 3 ≤Mmax and the con-
dition in step 3 of Algo. 2 is satisfied (since each new seg-
ment is at least mink=1,...,M 0 +1 Nk/4 ≥ β(N) for sufficiently
large N), êm+3 is a valid output of Algo. 2. Furthermore, the
event M̂ = m implies the event êm − êm+3 ≤ 3f(N). In addi-
tion, 3f(N) < C1 min{Nj−1 , Nj} for sufficiently large N due
to Assumption (A.3). Thus, êm − êm+3 < C1 min{Nj−1 , Nj}
which contradicts the inequality in (25). Therefore, M̂ �= m for
sufficiently large N almost surely. By similar reasoning we can
prove Inequality (4).

Second, we prove the over-fitting part by contradiction. As-
sume that M̂ = m > 2M0 , by the pigeonhole principle there
are two detected segments that are adjacent and that belong
to the same true segment. Without loss of generality, suppose
that {Xn : n = τ + 1, . . . , τ + n1} and {Xn : n = τ + n1 +
1, . . . , τ + n1 + n2} are from distribution Gk . We consider the
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configuration that merges the aforementioned two segments into
one while keeping other segments unchanged. Since n1 , n2 ≥
β(N) = Θ(N), via a similar derivation of (17), it can be proved
that for some constant C0 > 1, êm−1 − êm < C0 log logN for
sufficiently large N almost surely. On the other hand, the event
M̂ = m implies that êm−1 − êm ≥ f(N). Whenever f(N) ≥
C0 log log(N), êm−1 − êm ≥ C0 log log(N) which is a contra-
diction to the previous inequality. Therefore, pr{lim sup

N→∞
(M̂ >

2M0)} ≤ pr{lim sup
N→∞

(êm−1 − êm < C0 log logN)} = 0.

Proof of Theorem 4: To prove Theorem 4, we need the follow-
ing additional technical lemmas. The lemmas serve to enumer-
ate various configurations of change points (events) that will not
eventually happen given sufficiently large sample size. Loosely
speaking, in those configurations, either “there exists a detected
change point that is redundant” or “a true change point is too
far away from all the detected change points”.

Lemma 3 shows that if there are two neighboring segments
that consist of points from the same underlying true segment,
then Algo. 1 will almost surely merge them.

For each k = 1, . . . ,M0 + 1, we define Pk = {Lk−1 +
1, . . . , Lk}, and use {X(k)

n : n = 1, . . . , Nk} to represent
the points in the kth true segment, namely {XLk −1 +1 , . . . ,
XLk −1 +Nk

}.
Lemma 3: For each k = 1, 2, . . . ,M0 + 1, let Ek,N denote

the event that Algo. 2 produces two neighboring segments that
are both subsets of {Xn, n ∈ Pk}, the true kth segment. In
other words, letEk,N denote the event “there exist n1 , n2 , n3 ∈
N such that 0 ≤ n1 < n2 < n3 ≤ Nk, and {X(k)

n : n1 < n ≤
n2}, {X(k)

n : n2 < n ≤ n3} are two detected segments”. As-
sume that f(N) ≥ C logN for some constant C > 16D/c0 .
Then pr

(
lim supN→∞Ek,N

)
= 0.

Proof: For brevity, we let p1
Δ= (n2 − n1)/(n3 − n1), p2

Δ=
1 − p1 . Since Ek,N implies the event that the loss of merging
the two segments into one is larger than f(N), we obtain from
Equality (9) and the union bound that

pr(Ek,N ) ≤
∑

I
pr

⎧
⎨

⎩

∣∣∣∣∣

√
p2S

(k)
n1 :n2√

n2 − n1
−

√
p1S

(k)
n2 :n3√

n3 − n2

∣∣∣∣∣

2

> f(N)

⎫
⎬

⎭

where I
Δ= {(n1 , n2 , n3) : 1 ≤ n1 < n2 < n3 ≤ Nk}. For any

tuple (n1 , n2 , n3),

pr

⎧
⎨

⎩

∣∣∣∣∣
√
p2

S
(k)
n1 :n2√
n2 − n1

−√
p1

S
(k)
n2 :n3√
n3 − n2

∣∣∣∣∣

2

> f(N)

⎫
⎬

⎭

≤ pr

⎧
⎨

⎩

D⋃

d=1

⎧
⎨

⎩

(√
p2S

(k)
n1 :n2 ,d√

n2 − n1
−

√
p1S

(k)
n2 :n3 ,d√

n3 − n2

)2

>
f(N)
D

⎫
⎬

⎭

⎫
⎬

⎭

≤
D∑

d=1

pr

⎧
⎨

⎩

(√
p2S

(k)
n1 :n2 ,d√

n2 − n1
−

√
p1S

(k)
n2 :n3 ,d√

n3 − n2

)2

>
f(N)
D

⎫
⎬

⎭ .

From triangular inequality and p1 , p2 < 1, each term in the
above summation is further upper bounded by

∑

(n
′
,n

′′
)=(n1 ,n2 ) or (n2 ,n3 )

pr

⎧
⎨

⎩

∣∣∣∣∣∣

S
(k)
n ′ :n ′′ ,d

n′′ − n′

∣∣∣∣∣∣
>

1
2

√
f(N)

D(n′′ − n′)

⎫
⎬

⎭

< 2 exp
{
−c0(n′′ − n

′
)

f(N)
4D(n′′ − n′)

}
(26)

where the last inequality is due to Assumption (A.4). Taking
and (26) into previous inequalities, we obtain

pr(Ek,N ) ≤ N 3
k (2D) exp

{
−c0f(N)

4D

}
≤ 2DN−C ′

for a constant C
′
> 1, where the last inequality follows from

the assumption of Lemma 3. Therefore
∑∞

N=1 pr(Ek,N ) <
∞ and by Borel-Cantelli lemma pr(lim supN→∞Ek,N )
= 0. �

As a follow up result to Lemma 3, Lemma 4 shows that if
there are at most η points from another true segment from one
side involved, then Algo. 1 still merges them almost surely
as long as η is small compared with the penalty increment
f(N).

Lemma 4: Suppose that M0 > 0. For each k = 1, 2, . . . ,
M0 , let Ek,N denote the event that Algo. 2 produces two
neighboring segments the first of which is a subset of
{Xn, n ∈ Pk} and the second of which consists of points from
{Xn, n ∈ Pk} and at most η points from {Xn, n ∈ Pk+1},
where 1 ≤ η ≤ Nk+1 . In other words, let Ek,N denote the
event “there exist n1 , n2 , n3 ∈ N such that 0 ≤ n1 < n2 <

Nk, 1 ≤ n3 ≤ η, and {X(k)
n : n = n1 + 1, . . . , n2}, {X(k)

n :
n = n2 + 1, . . . , Nk} ∪ {X(k+1)

n : n = 1, . . . , n3} are two
detected segments”. Assume that for some constant
C > 64D/c0 ,

f(N) ≥ max{16|μk − μk+1 |2η, C logN}. (27)

Then pr
(
lim supN→∞Ek,N

)
= 0.

Proof: The proof of Lemma 4 is similar to that of Lemma 3,
so we only highlight the main differences.

Similar to the proof of Lemma 3, we obtain from (9) and the
union bound that

pr(Ek,N ) ≤
∑

1≤n1<n2<Nk
1≤n3 ≤η

pr

{∣∣∣∣

√
Nk − n2 + n3

Nk − n1 + n3

S
(k)
n1 :n2√
n2 − n1

−
√

n2 − n1

Nk − n1 + n3

S
(k)
n2 :Nk

+ S
(k+1)
0:n3√

Nk − n2 + n3
+ Cn1 ,n2 ,n3

∣∣∣∣
2

>f(N)

}

(28)
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where

Cn1 ,n2 ,n3

Δ=
√

n2 − n1

(Nk − n1 + n3)(Nk − n2 + n3)

× n3(μk − μk+1)

<
√
n3 |μk+1 − μk | ≤ √

η|μk+1 − μk | =

√
f(N)
4

.

From the above inequalities, and using the triangle inequality,
we obtain

pr(Ek,N ) ≤
∑

1≤n1<n2<Nk
1≤n3 ≤η

pr

{∣∣∣∣∣
S

(k)
n1 :n2√
n2 − n1

∣∣∣∣∣+
∣∣∣∣∣
S

(k)
n2 :Nk√
Nk − n2

∣∣∣∣∣

+

∣∣∣∣∣
S

(k+1)
0:n3√
n3

∣∣∣∣∣ >
3
√
f(N)
4

}
. (29)

Using the union bound similar to (26), each term in the above
summation can be upper bounded by

∑

k ′ ,n ′ ,n ′′
pr

⎧
⎨

⎩

∣∣∣∣∣∣

S
(k

′
)

n ′ :n ′′√
n′′ − n′

∣∣∣∣∣∣
>

√
f(N)
4

⎫
⎬

⎭

≤ 6D exp
{
−c0f(N)

16D

}
, (30)

where the summation is taken over a tuple (k
′
, n

′
, n

′′
) of

three possible values: (k, n1 , n2), (k, n2 , Nk ), or (k + 1, 0, n3).
Bringing (30) into (29), we obtain

pr(Ek,N ) ≤ 6DN 3 exp
{
−c0f(N)

16D

}
≤ 6DN−C ′

for a constant C
′
> 1, where the last inequality follows from

(27). Therefore
∑∞

N=1 pr(Ek,N ) <∞ and by Borel-Cantelli
lemma pr(lim supN→∞Ek,N ) = 0. �

Lemma 5 shows that if there are at most η points from another
true segment from two sides involved, then Algo. 1 still merges
them almost surely as long as η is small compared with the
penalty increment f(N).

Lemma 5: Suppose that M0 > 1. For each k = 2, . . . ,M0
and 1 ≤ η ≤ min{Nk−1 , Nk+1}, let Ek,N denote the event
“there exist n1 , n2 , n3 such that 1 ≤ n1 ≤ Nk, 1 ≤ n2 ≤ η, 1
≤ n3 ≤ η, and {X(k−1)

n : n = Nk−1 − n3 + 1, . . . , Nk−1} ∪
{X(k)

n : n = 1, . . . , n1}, {X(k)
n : n = n1 + 1, . . . , Nk} ∪

{X(k+1)
n : n=1, . . . , n2} are two detected segments”. Assume

that f(N) ≥ max{100|μk−1 − μk |2η, 100|μk − μk+1 |2η,
C logN} for some constant C > 100D/c0 . Then we obtain
the desired pr(lim supN→∞Ek,N ) = 0.

Proof: Let n′1 = Nk − n1 . The main difference with the
proof of Lemma 4 is the treatment of the constant term,

which is

constn1 ,n2 ,n3 =

√
(n3 + n1)(n′1 + n2)
n3 +Nk + n2

(
n3

n3 + n1
(μk−1 − μk)

+
n2

n′1 + n2
(μk − μk+1)

)

≤
√

n3(n′1 + n2)
(n3 + n1)(n3 +Nk + n2)

√
n3 |μk−1 − μk |

+

√
(n3 + n1)n2

(n3 +Nk + n2)(n′1 + n2)
√
n2 |μk − μk+1 |

)

≤ 2
√
ηmax{|μk−1 − μk |, |μk − μk+1 |} ≤

√
f(N)
5

.

The remaining proof is similar to that of Lemma 4. �
Lemma 6 proves that with probability one, for large N there

is no detected segment that consists of points from the same true
segment while having a small size (compared with the penalty
increment f(N)).

Lemma 6: Suppose thatM0 > 0. For each k = 2, . . . ,M0 +
1, letEk,N denote the event “there exist n1 , n2 , n3 such that 1 ≤
n1 < n2 ≤ η, 1 ≤ s ≤ k − 1, 1 ≤ n3 ≤ Nk−s and {X(k−s)

n :
n = Nk−s − n3 + 1, . . . , Nk−s} ∪ · · · ∪ {X(k)

n : n = 1, . . . ,
n1}, {X(k)

n : n = n1 + 1, . . . , n2} are two detected segments”
where 1 ≤ η ≤ Nk . Assume that

f(N) ≥ max{(s+ 3)2Δ̄2
μη, C logN} (31)

for some constant C > 4(s+ 3)2D/c0 . Then we obtain the
desired pr

(
lim supN→∞Ek,N

)
= 0.

Proof: Let p1 = (Lk−1 − Lk−s+1 + n2 + n3)−1(Lk−1 −
Lk−s+1 + n1 + n3), p2 = 1 − p1 . Similar to Inequality (28) we
obtain

pr(Ek,N ) ≤
∑

1≤n1<n2<η
1≤n3 ≤Nk −s

pr

{∣∣∣∣∣
√
p2
S

(k−s)
Nk −s−n3 :Nk −s + · · · + S

(k)
0:n1√

Lk−1 − Lk−s+1 + n1 + n3

− √
p1

S
(k)
n1 :n2√
n2 − n1

+
√
p1(n2 − n1)(μ∗ − μk )

∣∣∣∣∣

2

> f(N)

⎫
⎬

⎭

where

μ∗ =
n3μk−s +

∑k−1
j=k−s+1 Njμj + n1μk

n3 +
∑k−1

j=k−s+1 Nj + n1

The last term in the above summation is bounded by
∣∣∣∣
√
p1(n2 − n1)(μ∗ − μk )

∣∣∣∣ ≤
√
n2 − n1 |μ∗ − μk |

≤ √
ηΔ̄μ ≤

√
f(N)
s+ 3

.

Following similar proof in Inequalities (29)–(30), we obtain

pr(Ek,N ) ≤ 2(s+ 3)DN 3 exp
{
− c0f(N)

(s+ 3)2D

}
,
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which implies pr(lim supN→∞Ek,N ) = 0 under Condition
(31) and Borel-Cantelli lemma. �

Lemmas 7 and 8 show that with probability one, eventually
each true change point can not be too far away from the detected
change point nearest to it.

Lemma 7: Suppose that M0 > 0. For each k = 2,
. . . ,M0 + 1, let Ek,N denote the event “there exist
n1 , n2 , n3 such that 1 ≤ n1 ≤ Nk−1 , 1 ≤ n2 < n3 < Nk ,
and {X(k−1)

n : n = Nk−1 − n1 + 1, . . . , Nk−1} ∪ {X(k)
n : n =

1, . . . , n2}, {X(k)
n : n = n2 + 1, . . . , n3} are two detected seg-

ments”, and let Ak,N denote the event

min{n1 , n2} > qk (N) Δ=
250D logN

c0 |μk−1 − μk |2 .

Then pr
{
lim supN→∞(Ak,N ∩ Ek,N )

}
= 0.

Lemma 8: Suppose that M0 > 1 and η is an integer that
satisfies 1 ≤ η ≤ Nk−1 . For each k = 2, . . . ,M0 , let Ek,N

denote the event “there exist n1 , n2 , n3 such that 1 ≤
n1 ≤ Nk−1 , 1 ≤ n2 ≤ Nk, 1 ≤ n3 ≤ η, and {X(k−1)

n : n =
Nk−1 − n1 + 1, . . . , Nk−1} ∪ {X(k)

n : n=1, . . . , n2}, {X(k)
n :

n = n2 + 1, . . . , Nk} ∪ {X(k+1)
n : n = 1, . . . , n3} are two

detected segments”, and let Ak,N denote the event

min{n1 , n2} ≥ max
{

4η
(
√

2 − 1)2

|μk − μk+1 |2
|μk−1 − μk |2 , 2qk (N)

}
,

where qk (N) = 250D logN/(c0 |μk−1 − μk |2). Then pr{
lim supN→∞(Ak,N ∩ Ek,N )

}
= 0.

Proof: We prove Lemma 8. The proof of Lemma 7
is similar. Consider the postulation that the two detected
segments are {X(k−1)

n : n = Nk − n1 + 1, . . . , Nk}, {X(k)
n :

n = 1, . . . , Nk} ∪ {X(k+1)
n : n = 1, . . . , n3} instead. Then the

event Ek,N implies that L1 ≤ L2 , where

L1 = (Q(k−1)
Nk −1 −n1 :Nk −1

+Q
(k)
0:n2

+ g
(k−1,k)
Nk −1 −n1 :n2

) +Q(k,k+1)
n2 :n3

,

L2 = Q
(k−1)
Nk −1 −n1 :Nk −1

+ (Q(k)
0:n2

+ g
(k,k ,k+1)
0,n2 ,n3

+Q(k,k+1)
n2 :n3

).

Thus, g(k−1,k)
Nk −1 −n1 :n2

≤ g
(k,k ,k+1)
0,n2 ,n3

. Moreover, we can calculate

g(k,k+1)
n2 ,n3

=
∣∣∣∣
√
p2
S

(k−1)
Nk −1 −n1 :Nk −1√

n1
−√

p1
S

(k)
0:n2√
n2

+ C

∣∣∣∣
2

,

g
(k,k ,k+1)
0,n2 ,n3

=
∣∣∣∣
√
p′2
S

(k)
0:n2√
n2

−
√
p′1
S

(k)
n2 :Nk

+ S
(k+1)
0:n3√

Nk − n2 + n3
+ C ′

∣∣∣∣
2

,

where we have let p1 = n1/(n1 + n2), p2 = 1 − p1 , p′1 =
n2/(Nk + n3), p′2 = 1 − p′1 , and

C =
√
p1n2(μk−1 − μk ), C ′ =

√
p′1

Nk − n2 + n3

×n3(μk − μk+1).

Therefore, we obtain the following inequality |C| ≤ |C ′|+
∣∣∣∣
S

(k−1)
Nk −1 −n1 :Nk −1√

n1

∣∣∣∣∣+ 2
∣∣∣∣
S

(k)
0:n2√
n2

∣∣∣∣∣+
∣∣∣∣∣
S

(k)
n2 :Nk√
Nk − n2

∣∣∣∣∣+
∣∣∣∣∣
S

(k+1)
0:n3√
n3

∣∣∣∣∣ .

Let n̄ = min{n1 , n2}. Since

|C| − |C ′| ≥
√
n̄

2
|μk−1 − μk | − √

n3 |μk − μk+1 |

≥ 1
2

√
n̄|μk−1 − μk | ≥ 1

2

√
2qk (N)|μk−1 − μk |

where the last two inequalities are under Ak,N , we obtain

pr(Ak,N ∩ Ek,N ) ≤ pr

(
⋃
{∣∣∣∣∣
S

(k−1)
Nk −1 −n1 :Nk −1√

n1

∣∣∣∣∣+
∣∣∣∣∣
S

(k)
0:n2√
n2

∣∣∣∣∣

+ 2

∣∣∣∣∣
S

(k)
n2 :Nk√
Nk − n2

∣∣∣∣∣+
∣∣∣∣∣
S

(k+1)
0:n3√
n3

∣∣∣∣∣ ≥
√

2qk (N)
2

|μk−1 − μk |
})

.

where the union is over 1 ≤ n1 ≤ Nk−1 , 1 ≤ n2 ≤ Nk, 1 ≤
n3 ≤ η. Using similar techniques as in (26), we obtain
pr(Ak,N ∩ Ek,N ) ≤ 10DN−2 . Finally, it follows from Borel-
Cantelli lemma that pr{lim supN→∞(Ak,N ∩ Ek,N )} = 0. �

Proof of Theorem 4 (Main Body): For the case M0 = 0,
Lemma 3 guarantees that there is not overfitting. Next, we prove
for the caseM0 > 0. It has been proved in Theorem 3 that there
is no underfitting for sufficiently large N almost surely. Note
that in its proof, only Assumptions (A.2)–(A.3) were used. To
prove the strong consistency, it remains to prove that there is
no overfitting. To that end, we define the following sequence of
M0 (M0 > 0) constants ηk (N), k = 1, . . . ,M0 :

ηk (N) = max
{

4ηk+1(N)
(
√

2 − 1)2

|μk+1 − μk+2 |2
|μk − μk+1 |2 , 2qk+1(N)

}
,

ηM 0 (N) = qM 0 +1(N)

where qk (N), k = 2, . . . ,M0 + 1 have been defined in
Lemma 7. We prove in three steps sketched below:

Step 1) If Algo. 2 is applied to {Xn, n = 1, . . . , N1 +
η1} where 0 ≤ η1 ≤ min{N2 , η1(N)}, then almost surely no
change point is detected as N → ∞. In other words, when the
data consists of one true segment and at most η1(N) extra points
from another segment at the end, there is no spurious discovery
of change points.

Step 2) Suppose that M0 > 1. If Algo. 2 is applied to {Xn :
n = 1, . . . , Lk + ηk} where k, ηk are any integers such that
1 ≤ k ≤M0 and 0 ≤ ηk ≤ ηk (N), then almost surely k − 1
change points are detected, and the largest deviation of each
true change point with its nearest detected change point is no
larger than ηk (N). In other words, when the data consists of
k true segments plus at most ηk (N) points from the (k + 1)th
true segment, the number of true change points k − 1 is correctly
selected.

Step 3) Suppose that M0 > 1. If Algo. 2 is applied to X1:N ,
then almost surely M0 change points are detected.

Before we prove each step, recall that 2qk = 500D
logN/(c0 |μk−1 − μk |2) and c = 4/(

√
2 − 1)2 . By simple cal-

culations, we obtain the identity in (32) shown at the top of the
next page, for each k = 1, . . . ,M0 − 1, where η∗(N) is defined
in Theorem 4.

Proof of Step 1): If there is at least one change point pro-
duced by Algo. 2, then its location (in terms of the subscript of
Xn ) belongs to either {1, . . . , N1} or {N1 + 1, . . . , N1 + η1}.
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ηk (N) = max

⎧
⎨

⎩
⋃

k̃=k,...,M 0 −2

⎧
⎨

⎩2qk̃+2(N)
k̃∏

j=k

(
c
|μj+1 − μj+2 |2
|μj − μj+1 |2

)⎫⎬

⎭ ∪ {2qk+1(N)} ∪
⎧
⎨

⎩ηM 0 (N)
M 0 −1∏

j=k

(
c
|μj+1 − μj+2 |2
|μj − μj+1 |2

)⎫⎬

⎭

⎫
⎬

⎭

=
500D logN

c0
max

⎧
⎨

⎩
⋃

k̃=k,...,M 0 −2

{
ck̃−k+1

|μk − μk+1 |2
}

∪
{

1
|μk − μk+1 |2

}
∪
{

cM 0 −k

2|μk − μk+1 |2
}⎫⎬

⎭ ≤ η∗(N) (32)

However, the former case will not happen i.o. due to Lemma 4
(Condition (27) with Ek,N ); and the latter case will not hap-
pen i.o. due to Lemma 6 (Condition (31) with s = 1). We note
that Conditions (27) and (31) are guaranteed by Inequalities (6)
and (32).

Proof of Step 2): Suppose that the last two change points
discovered by Algo. 2 are denoted by y, z, i.e. Xy+1 , . . . , Xz

and Xz+1 , . . . , XLk +ηk are the last two segments.
The case k = 1 has been proved in Step 1). Assume that k > 1

and the statement is true for each k̃ such that 1 ≤ k̃ < k. We
prove that the statement holds for k̃ = k as well. We consider
the three possible events: z belongs to either {1, . . . , Lk−1},
{Lk−1 + 1, . . . , Lk} or {Lk + 1, . . . , Lk + ηk (N)}, and prove
that almost surely k change points are discovered given each
event.

(E1) z belongs to {1, . . . , Lk−1}. Then, by induction hy-
pothesis, at most k − 2 change points are discovered from
{Xn : n = 1, . . . , z}. Thus, there are at most k − 1 change
points in total.

(E2) z belongs to {Lk−1 + 1, . . . , Lk}. There are three pos-
sible events: (E2.1) y ≤ Lk−2 ; (E2.2) Lk−2 + 1 ≤ y ≤ Lk−1
(E2.3) Lk−1 + 1 ≤ y < z.

Given (E2.1), since the induction hypothesis guarantees that
at most k − 3 change points are discovered from {Xn : n =
1, . . . , y}, there are at most k − 1 change points in total.

Given (E2.2), from Lemma 8 and the way ηk−1(N) was
constructed, we obtain min{Lk−1 − y, z − Lk−1} ≤ ηk−1(N)
for all sufficiently large N almost surely.

Consider the following two subevents of (E2.2). (E2.2.1)
1 ≤ z − Lk−1 ≤ ηk−1(N); by induction hypothesis at most
k − 2 change points are discovered from {Xn : n = 1, . . . , z},
so there are at most k − 1 change points in total; (E2.2.2)
Lk−1 − y ≤ ηk−1(N); this will not happen i.o. by using
Lemma 5 (in which the condition in Lemma 5 is guaranteed
by (6)).

The event (E2.3) will not happen i.o. by applying Lemma 4
(where Condition (27) is guaranteed by (6)).

(E3) z belongs to {Lk + 1, . . . , Lk + ηk (N)}. We con-
sider four subevents: (E3.1) y ≤ Lk−2 , (E3.2) Lk−2 + 1 ≤ y ≤
Lk−1 , (E3.3) Lk−1 + 1 ≤ y ≤ Lk , and (E3.4) Lk + 1 ≤ y < z.

For the event (E3.1), induction hypothesis guarantees that
at most k − 2 change points are discovered from {Xn : n =
1, . . . , y}, so there are at most k − 1 change points in total. Both
the events (E3.2) and (E3.3) will not happen i.o. by application
of Lemma 6 (with s = 1, 2, where Condition (31) is guaranteed
by (6)). Applying Lemma 3 (with Ek+1,N ), it can be seen that
the event (E3.4) will not happen i.o.

Proof of Step 3): Step 3 can be regarded as a special type of
step 2 with k = M0 + 1, and its proof follows from the above
proof for events (E1), (E2).

To complete the proof, it remains to prove that the largest
deviation of each true change point with its nearest detected
change point is less than η∗(N). This can be proved in similar
fashion as above.

Remark 5: In summary, the key part of the proof is Step
2) which is by induction on k, the number of underlying true
segments (despite a small amount of extra points). The induction
step is completed using the events (E1), (E2.1), (E2.2.1), and
(E3.1) for each k. We note that the number of induction steps is
finite, i.e. k = 1, . . . ,M0 . Because of that, any (finite) union of
events that will not infinitely often happen will not eventually
happen too.

REFERENCES

[1] M. Thottan and C. Ji, “Anomaly detection in IP networks,” IEEE Trans.
Signal Process., vol. 51, no. 8, pp. 2191–2204, Aug. 2003.

[2] R. Jana and S. Dey, “Change detection in teletraffic models,” IEEE Trans.
Signal Process., vol. 48, no. 3, pp. 846–853, Mar. 2000.

[3] S. Hammoudeh and H. Li, “Sudden changes in volatility in emerging
markets: The case of Gulf Arab stock markets,” Int. Rev. Financial Anal.,
vol. 17, no. 1, pp. 47–63, 2008.

[4] J. J. Vidal, “Real-time detection of brain events in EEG,” Proc. IEEE,
vol. 65, no. 5, pp. 633–641, May 1977.

[5] S. J. Hawkins, A. J. Southward, and M. J. Genner, “Detection of environ-
mental change in a marine ecosystem–evidence from the western english
channel,” Sci. Total Environ., vol. 310, no. 1, pp. 245–256, 2003.

[6] H. Huntington, T. Callaghan, S. Fox, and I. Krupnik, “Matching traditional
and scientific observations to detect environmental change: A discussion
on arctic terrestrial ecosystems,” Ambio, vol. 13, pp. 18–23, 2004.

[7] M. Basseville and V. Nikiforov, Detection of Abrupt Changes: Theory and
Application. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

[8] E. Page, “Continuous inspection schemes,” Biometrika, vol. 41,
pp. 100–115, 1954.

[9] F. Gustafsson, “The marginalized likelihood ratio test for detecting
abrupt changes,” IEEE Trans. Autom. Control, vol. 41, no. 1, pp. 66–78,
Jan. 1996.

[10] R. A. Davis, D. Huang, and Y.-C. Yao, “Testing for a change in the
parameter values and order of an autoregressive model,” Ann. Stat.,
vol. 23, pp. 282–304, 1995.

[11] T. Vogelsang, “Testing for a shift in mean without having to estimate
serial-correlation parameters,” J. Bus. Econ. Statist., vol. 16, pp. 73–80,
1998.

[12] C. Incln and G. C. Tiao, “Use of cumulative sums of squares for retro-
spective detection of change of variance,” J. Amer. Statist. Assoc., vol. 89,
pp. 913–923, 1994.

[13] H. L. Gombay, E. and M. Huskova, “Estimators and tests for change in
variances,” Statist. Decisions, vol. 14, pp. 145–159, 1996.

[14] R. A. Davis, T. Lee, and G. A. Rodriguez-Yam, “Break detection for a
class of nonlinear time series models,” J. Time Ser. Anal., vol. 29, no. 5,
pp. 834–867, 2008.
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