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SLANTS: Sequential Adaptive Nonlinear
Modeling of Time Series
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Abstract—We propose a method for adaptive nonlinear sequen-
tial modeling of time series data. Data are modeled as a nonlinear
function of past values corrupted by noise, and the underlying
nonlinear function is assumed to be approximately expandable in
a spline basis. We cast the modeling of data as finding a good fit
representation in the linear span of multidimensional spline basis,
and use a variant of l1 -penalty regularization in order to reduce
the dimensionality of representation. Using adaptive filtering tech-
niques, we design our online algorithm to automatically tune the
underlying parameters based on the minimization of the regular-
ized sequential prediction error. We demonstrate the generality
and flexibility of the proposed approach on both synthetic and
real-world datasets. Moreover, we analytically investigate the per-
formance of our algorithm by obtaining both bounds on prediction
errors and consistency in variable selection.

Index Terms—Adaptive filtering, Data prediction, Group
LASSO, Nonlinearity, Sequential modeling, SLANTS, Spline, Time
series.

I. INTRODUCTION

S EQUENTIALLY observed multi-dimensional time series
are emerging in various applications. In most of these ap-

plications, modeling nonlinear functional inter-dependency be-
tween present and past data is crucial for both representation
and prediction. This is a challenging problem, especially when
fast online implementation, adaptivity to new data generating
processes, and ability to handle high dimensions need to be
simultaneously taken into account in nonlinear modeling. For
example, environmental science combines high dimensional
weather signals for real time prediction [1]. In epidemics, huge
amount of online search data is used to form fast prediction of
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influenza epidemics [2]. In finance, algorithmic traders demand
adaptive models to accommodate a fast changing stock market.
In robot autonomy, there is the challenge of learning the high
dimensional movement systems [3]. These tasks usually take
high dimensional input signals which may contain a large num-
ber of irrelevant signals. In all these applications, methods to
remove redundant signals and learn the nonlinear model with
low computational complexity are well sought after. This mo-
tivates our work in this paper, where we propose an approach
to sequential nonlinear adaptive modeling of potentially high
dimensional time series.

Inference of nonlinear models has been a notoriously diffi-
cult problem, especially for large dimensional data [3]–[5]. In
low dimensional settings, there have been remarkable paramet-
ric and nonparametric nonlinear time series models that have
been applied successfully to data from various domains. Exam-
ples include threshold models [6], generalized autoregressive
conditional hetero-scedasticity models [7], multivariate adap-
tive regression splines (MARS) [4], generalized additive models
[8], functional coefficient regression models [9], etc. However,
some of these methods may suffer from prohibitive computa-
tional complexity. Variable selection using some of these ap-
proaches is yet another challenge as they may not guarantee the
selection of significant predictors (variables that contribute to
the true data generating process) given limited data size. In con-
trast, there exist high dimensional nonlinear time series models
that are mostly inspired by high dimensional statistical methods.
There are typically two kinds of approaches. In one approach, a
small subset of significant variables is first selected and then non-
linear time series models are applied to selected variables. For
example, independence screening techniques such as [10]–[12]
or the MARS may be used to do variable selection. In another
approach, dimension reduction method such as least absolute
shrinkage and selection operator (LASSO) [13] are directly ap-
plied to nonlinear modeling. Sparse additive models have been
developed in recent works of Ravikumar et al. [14] and Huang
et al. [5]. In the work of Bazerque et al. [15], splines addi-
tive models together with group-sparsity penalty was proposed
and applied to spectrum cartography. These offline approaches
seem promising and may benefit from additional reductions in
computational complexity.

In this work, inspired by the second approach, we develop a
new method referred to as Sequential Learning Algorithm for
Nonlinear Time Series (SLANTS). A challenging problem in
sequential inference is that the data generating process varies
with time, which is common in many practical applications
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[1]–[3]. We propose a method that can help address sequential
inference of potentially time-varying models. Moreover, the
proposed method provides computational benefits as we avoid
repeating batch estimation upon sequential arrival of data.
Specifically, we use the spline basis to dynamically approximate
the nonlinear functions. The algorithm can efficiently give
unequal weights to data points by design, as typical in adaptive
filtering. We also develop an online version of group LASSO
for dimensionality reduction (i.e. simultaneous estimation and
variable selection). To this end, the group LASSO regularization
is re-formulated into a recursive estimation problem that pro-
duces an estimator close to the maximum likelihood estimator
from batch data. We theoretically analyze the performance of
SLANTS. Under reasonable assumptions, we also provide an
estimation error bound, and a backward stepwise procedure
that guarantees consistency in variable selection.

The outline of this paper is given next. In Section II, we for-
mulate the problem mathematically and present our inference
algorithm. In Section III, we present our theoretical results re-
garding prediction error and model consistency. In Section IV,
we provide numerical results using both synthetic and real data
examples. The results demonstrate excellent performance of our
method. We make our conclusions in Section V.

II. SEQUENTIAL MODELING OF NONLINEAR TIME SERIES

In this section, we first present our mathematical model
and cast our problem as l1-regularized linear regression. We
then propose an expectationmaximization (EM) type algorithm
to sequentially estimate the underlying coefficients. Finally
we disclose methods for tuning the underlying parameters.
Combining our proposed EM estimation method with automatic
parameter tuning, we tailor our algorithm to sequential time
series applications.

A. Formulation of SLANTS

Consider a multi-dimensional time series given by

X t = [X1,t , . . . , XD,t ]T ∈ RD , t = 1, 2, . . .

Our main objective in this paper is to predict the value of XT

at time T given the past observationsXT −1 , . . . ,X1 . For sim-
plicity, we present our results for the prediction of scalar random
variable X1,T +1 . We start with the general formulation

X1,T = f(XT −1 , . . . ,XT −L ) + εT , (1)

where f(·, · · · , ·) is smooth (or at least piece-wise smooth), εt

are independent and identically distributed (i.i.d.) zero mean
random variables and the lag order L is a finite but unknown
nonnegative integer.

We rewrite the model in (1) as

X1,T = f(X1,T −1 , . . . , X1,T −L , . . . ,XD,T −1 , . . . , XD,T −L )

+ εT .

With a slight abuse of notation, we rewrite the above model
(1) as

YT = f(X1,T , . . . , XD̃ ,T ) + εT , (2)

with observations YT = X1,T and [X1,T , . . . , XD̃ ,T ] =
[X1,T −1 , . . . , X1,T −L , . . . ,XD,T −1 , . . . , XD,T −L ], where D̃ =
DL. To estimate f(·, · · · , ·), we consider the following least
squares formulation

min
f

T∑

t=1

wT ,t(Yt − f(X1,t , . . . , XD̃ ,t))
2 (3)

where {wT ,t ∈ [0, 1]} are weights used to emphasize varying
influences of the past data. The weights may also be used to
accommodate different variance levels across dimensions. The
appropriate choice of {wT ,t ∈ [0, 1]} will be later discussed in
Section II-C.

In order to estimate the nonlinear function f(·, · · · , ·) , we
further assume a nonlinear additive model, i.e.

f(X1,t , . . . , XD̃ ,t)=μ+
D̃∑

i=1

fi(Xi), E{fi(Xi)} = 0, (4)

where fi are scalar functions, and expectation is with respect
to the stationary distribution of Xi . The second condition is
required for identifiability. To estimate fi , we use B-splines
(extensions of polynomial regression techniques [16]). In our
presentation, we consider the additive model mainly for brevity.
Our methods can be extended to models where there exist inter-
actions amongX1 , . . . ,XD̃ using multidimensional splines in
a straight-forward manner.

We assume that there are v spline basis of degree � for each
fi . Incorporating the B-spline basis into regression, we write

fi(x) =
v∑

j=1

ci,j bi,j (x),

bi,j (x) = B(x | si,1 , . . . , si,v−�+1) (5)

where si,1 , . . . , si,v−�+1 are the knots and ci,j are the coeffi-
cients associated with the B-spline basis. Replacing these into
(3), the problem of interest is now the minimization of

êT =
T∑

t=1

wT ,t

{
Yt − μ −

D̃∑

i=1

v∑

j=1

ci,j bi,j (Xi,t)
}2

(6)

over ci,j , i = 1, . . . , D̃, j = 1, . . . , v, under the constraint

T∑

t=1

v∑

j=1

ci,j bi,j (xi) = 0, for i = 1, . . . , L. (7)

which is the sample analog of the constraint in (4). Equiv-
alently, we obtain an unconstrained optimization problem by
centering the basis functions. Let bi,j (xi,t) be replaced by
bi,j (xi,t) − T−1 ∑T

t=1 bi,j (xi,t). By proper rearrangement, (6)
can be rewritten into a linear regression form

êT =
T∑

t=1

wT ,t(Yt − zT
t βT )2 (8)

where βT is a (1 + D̃v) × 1 column vector to be esti-
mated and zt is (1 + D̃v) × 1 column vector zt = [1, b1,1
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(x1,t), . . . , b1,v (x1,t), . . . , bD̃ ,1(xD̃ ,t), . . . , bD̃ ,v (xD̃ ,t)]. Let ZT

be the design matrix of stacking the row vectors zT
t , t =

1, . . . , T . Note that we have used βT instead of a fixed β to
emphasize that βT may vary with time. We have used bold style
for vectors to distinguish them from matrices. Let WT be the
diagonal matrix whose elements are wT ,t , t = 1, . . . , T . Then
the optimal βT in (8) can be recognized as the MLE of the
following linear Gaussian model

Y T = ZT βT + ε (9)

where ε ∈ N (0,W−1
T ). Here, we have used N (μ, V ) to denote

Gaussian distribution with mean μ and covariance matrix V .
To obtain a sharp model from large L, we further assume that

the expansion of f(·, · · · , ·) is sparse, i.e., only a few additive
components fi are active. Selecting a sparse model is critical
as models of over large dimensions lead to inflated variance,
thus compromising the predictive power. To this end, we give
independent Laplace priors for each sub-vector of βT corre-
sponding to each fi . Our objective now reduces to obtaining the
maximum a posteriori estimator (MAP)

log p(Y T | βT , ZT ) − λT

D̃∑

i=1

‖βT ,i‖2

= −1
2

T∑

t=1

wT ,t(Yt − zt
TβT )2 − λT

D̃∑

i=1

‖βT ,i‖2 + c (10)

where c is a constant that depends only on WT . The above prior
corresponds to the so called group LASSO [17]. The bold βT ,i

is to emphasize that it is not a scalar element of βT but a sub-
vector of it. It will be interesting to consider adaptive group
LASSO [18], i.e., to use λT ,i instead of a unified λT and this
is currently being investigated. We refer to [5] for a study of
adaptive group LASSO for batch estimation.

B. Implementation of SLANTS

In order to solve the optimization problem given by (10), we
build on an EM-based solution originally proposed for wavelet
image restoration [19]. This was further applied to online adap-
tive filtering for sparse linear models [20] and nonlinear models
approximated by Volterra series [21]. The basic idea is to de-
compose the optimization (10) into two parts that are easier to
solve and iterate between them. One part involves linear updates,
and the other involves group LASSO in the form of orthogonal
covariance which leads to closed-form solution.

For now, we assume that the knot sequence ti,1 , . . . , ti,v for
each i and v is fixed. Suppose that all the tuning parameters are
well-defined. We introduce an auxiliary variable τT that we re-
fer to as the innovation parameter. This helps us to decompose
the problem so that underlying coefficients can be iteratively up-
dated. It also allows the sufficient statistics to be rapidly updated
in a sequential manner. The model in (9) now can be rewritten as

Y T = ZT θT + W
− 1

2
T ε1 , θT = βT + τT ε2 ,

where

ε1 ∈ N (0, I − τ 2
T W

1
2

T ZT ZT
T W

1
2

T ), ε2 ∈ N (0, I) (11)

We treat θT as the missing data, so that an EM algorithm can
be derived. By basic calculations similar to that of [19], we
obtain the kth step of EM algorithm

E step:

Q(β | β̂(k)
T ) = − 1

2τ 2
T

‖β − r(k)‖2
2 − λT

D̃∑

i=1

‖βi‖2 (12)

where

r(k) = (I − τ 2
T AT )β̂

(k)
T + τ 2

T BT , (13)

AT = ZT
T WT ZT , BT = ZT

T WT Y T . (14)

The derivation of Equation (12) is included in the appendix.

M step: β̂
(k+1)
T is the maximum of Q(β | β̂(k)

T ) given by

β̂
(k+1)
T ,i =

[
1 − λT τ 2

T

‖r(k)
i ‖2

]

+
r

(k)
i , i = 1, . . . , D̃. (15)

Suppose that we have obtained the estimator β̂T at time step
T . Consider the arrival of the (T + 1)th point (yT +1 ,zT +1),
respectively corresponding to the response and covariates of
time step T + 1. We first compute r(0)

T +1 , the initial value of r
to be input the EM at time step T + 1:

r
(0)
T +1 = (I − τ 2

T AT +1)β̂T + τ 2
T BT +1 , (16)

where

AT +1 = (1 − γT +1)AT + γT +1zT +1z
T
T +1 ,

BT +1 = (1 − γT +1)BT + γT +1yT +1zT +1 . (17)

Then we run the above EM for K > 0 iterations to obtain an
updated β̂T +1 .

Remark 1: In the above equation, {γt} is a nonnegative se-
quence which we refer to as the step sizes. We shall elaborate
on its relation with {Wt} in Subsection II-C.

SLANTS can be efficiently implemented. The recursive com-
putation of AT (resp. BT ) reduces the complexity from O(D̃3)
to O(D̃2) (resp. from O(D̃2) to O(D̃)). Moreover, straightfor-
ward computations indicate that the complexity of SLANTS at
each time t is O(D̃2), which does not depend on T . Coordi-
nate descent [22] is perhaps the most widely used algorithm for
batch LASSO. Adapting coordinate descent to sequential setting
has the same complexity for updating sufficient statistics. But
straightforward use of batch LASSO has complexity O(D̃2T ).

Theorem 1: At each iteration, the mapping from β̂
(k)
T to

β̂
(k+1)
T is a contraction mapping for any τT , whenever the ab-

solute values of all eigenvalues of I − τ 2
T AT +1 are less than

one. In addition, there exists a unique global maximum point

of (10) denoted by β̂T , and the error ‖β̂(k+1)
T − β̂T 2‖ decays

exponentially in k.
Remark 2: The theorem states that EM can converge expo-

nentially fast to the MAP of (10). From its assumption, it can
be directly calculated that (10) as a function of βT is strictly
concave. We note that the assumption is not mild, so the ap-
plication of Theorem 1 is limited. But the proposed algorithm
does converge exponentially fast in our various synthetic and
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real data experiments. The proof of Theorem 1 is given in the
appendix.

C. The Choice of Tuning Parameters: From a
Prequential Perspective

To evaluate the predictive power of an inferential model es-
timated from all the currently available data, ideally we would
apply it to independent and identically generated datasets. How-
ever, it is not realistic to apply this cross-validation idea to real-
world time series data, since real data is not permutable and
has a “once in a lifetime” nature. As an alternative, we adopt
a prequential perspective [23] that the goodness of a sequential
predictive model shall be assessed by its forecasting ability.

Specifically, we evaluate the model in terms of the one-step
prediction errors upon each newly arrived data point and subse-
quently tune the necessary control parameters, including regu-
larization parameter λt and innovation parameter τt (see details
below). Automatic tuning of the control parameters are almost a
necessity in many real-world applications in which any theoreti-
cal guidance (e.g., our Theorem 2) may be insufficient or unreal-
istic. Throughout our algorithmic design, we have adhered to the
prequential principle and implemented the following strategies.

The choice of wT ,t : In view of equation (17), wT ,t is deter-
mined by w1,1 = γ1 , and

wt,t = γt , wt,j = wt−1,j (1 − γt), j = 1, . . . , t − 1,

for t > 1.
It includes two special cases that have been commonly used

in the literature. The first case is γt = 1/t. It is easy to verify
that wT ,t = 1/T, t = 1, . . . , T for any T . This leads to the usual
least squares. The second case is γt = c where c is a positive
constant. It gives wT ,t = c(1 − c)T −t , t = 1, . . . , T . From (3),
the estimator of f remains unchanged by rescaling wT ,t by 1/c,
i.e. wT ,t = (1 − c)T −t which is a series of powers of 1 − c. The
value 1 − c has been called the “forgetting factor” in the signal
processing literature and used to achieve adaptive filtering [20].

The choice of τT : Because the optimization problem

log p(Y T | βT ) − λT

L∑

i=1

‖βT ,i‖2 (18)

is convex, as long as τT is proper, the EM algorithm converges
to the optimum regardless of what τT is. But τT affects the
speed of convergence of EM as λT τ 2

T determines how fast βT

shrinks. Intuitively the larger τT is, the faster is the convergence.
Therefore we prefer τT to be large and proper. A necessary
condition for τT to be proper is to ensure that the covariance
matrix of ε1 in

ε1 ∈ N (0, I − τ 2
T W

1
2 ZT ZT

T W
1
2 ), ε2 ∈ N (0, I) (19)

is positive definite. Therefore, there is an upper bound τ̄T for
τT , and τ̄T converges to a positive constant τ̄ under some mild
assumptions (e.g. the stochastic process Xt is stationary). Ex-
tensive experiments have shown that τ̄T /2 produces satisfying
results in terms of model fitting. However, it is not computation-
ally efficient to calculate τ̄T at each T in SLANTS. Nevertheless
without computing τ̄T , we can determine if τT < τ̄T by checking
the EM convergence. If τT exceeds τ̄T , the EM would diverge

and coefficients go to infinity exponentially fast. This can be
proved via a similar argument to that of proof of Theorem 1.
This motivates a lazy update of τT with shrinkage only if EM
starts to diverge.

The choice of λT : On the choice of regularization parameter
λT , different methods have been proposed in the literature. The
common way is to estimate the batch data for a range of different
λT ’s, and select the one with minimum cross-validation error. To
reduce the underlying massive computation required for such an
approach, in the context of Bayesian LASSO [24], [25] proposed
an sequential Monte Carlo (SMC) based strategy to efficiently
implement cross-validation. The main proposal is to treat the
posterior distributions educed by an ordered sequence of λT as
πt, t = 0, 1, . . ., the target distributions in SMC, and thus avoid
the massive computation of applying Markov chain Monte Carlo
(MCMC) for each λ independently. Another method is to esti-
mate the hyper-parameter λT via empirical Bayes method [24].
In our context, however, it is not clear whether the Bayesian
setting with MCMC strategy can be efficient, as the dimension
Lv can be very large. An effective implementation technique is
to run three channels of our sequential modeling, corresponding
to λ−

T = λT /δ, λT , λ+
T = λT ∗ δ, where δ > 1 is a small step

size. The one with minimum average prediction error over the
latest window of data was chosen as the new λT . For exam-
ple, if λ−

T gives better performance, let the three channels be
λ−

T /δ, λ−
T , λ−

T ∗ δ. If there is an underlying optimal λ∗ which
does not depend on T , we would like our channels to con-
verge to the optimal λ∗ by gradually shrinking the stepsize δ.
Specifically in case that the forgetting factor γt = 1/t, we let
δT = 1 + 1

T (δ − 1) so that the step size δT → 1 at the same
speed as weight of new data.

The choice of knots: The main difficulty in applying spline
approximation is in determining the number of the knots to use
and where they should be placed. Jupp [26] has shown that the
data can be fit better with splines if the knots are free variables.
de Boor suggests the spacing between knots is decreased in
proportion to the curvature (second derivative) of the data. It
has been shown that for a wide class of stationary process, the
number of knots should be of the order of O(T ζ ) for available
sample size T and some positive constant ζ to achieve a satis-
fying rate of convergence of the estimated nonlinear function
to the underlying truth (if it exists) [27]. Nevertheless, under
some assumptions, we will show in Theorem 2 that the predic-
tion error can be upper bounded by an arbitrarily small number
(which depends on the specified number of knots). It is therefore
possible to identify the correct nonzero additive components in
the sequential setting. On the other hand, using a fixed number
of knots is computationally desirable because sharp selection of
significant spline basis/support in a potentially varying environ-
ment is computationally intensive. It has been observed in our
synthetic data experiments that the variable selection results are
not very sensitive to the number of knots as long as this number
is moderately large (e.g. around v = 10).

III. THEORETICAL RESULTS

Consider the harmonic step size γt = 1/t. For now assume
that the sequential update at each time t produces β̂t that is
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the same as the penalized least squares estimator given batch
data. We are interested in two questions. First, how to ex-
tend the current algorithm in order to take into account an
ever-increasing number of dimensions? Second, is it possi-
ble to select the “correct” nonzero components as sample size
increases?

The first question is important in practice as any prescribed fi-
nite number of dimensions/time series may not contain the data-
generating process, and it is natural to consider more candidates
whenever more samples are obtained. It is directly related to the
widely studied high-dimensional regression for batch data. In
the second question, we are not only interested in optimizing the
prediction error but also to obtain a consistent selection of the
true nonzero components. Moreover, in order to maintain low
complexity of the algorithm, we aim to achieve the above goal
by using a fixed number of spline basis. We thus consider the
following setup. Recall the predictive model (1) and its alterna-
tive form (2). We assume that L is fixed while D is increasing
with sample size T at certain rate.

Following the setup of [28], we suppose that each Xd takes
values from a compact interval [a, b]. Let [a, b] be partitioned
into J equal-sized intervals {Ij}J

j=1 , and let F denote the space
of polynomial splines of degree � ≥ 1 consisting of functions
g(·) satisfying 1) the restriction of g(·) to each interval is a
polynomial of degree �, and 2) g(·) ∈ C�−1 [a, b] (� − 1 times
continuously differentiable). Typically, splines are called linear,
quadratic or cubic splines accordingly as � = 1, 2, or 3. There ex-
ists a normalized B-spline basis {bj}v

j=1 for F, where v = J + �,
and any fi(x) ∈ F can be written in the form of (5). Let k ≤ �
be a nonnegative integer, β ∈ (0, 1] that p = k + β > 0.5, and
M > 0. Suppose each considered (non)linear function f has
kth derivative, f (k) , and satisfies the Holder condition with ex-
ponent β: |f (k)(x) − f (k)(x′)| < M |x − x′|β for x, x′ ∈ [a, b].

Define the norm ‖f‖2 =
√∫ b

a f(x)2dx. Let f ∗ ∈ F be the best
L2 spline approximation of f . Standard results on splines imply
that ‖fd − f ∗

d‖∞ = O(v−p) for each d. The spline approxima-
tion is usually an estimation under a mis-specified model class
(unless the data-generating function is low-degree polynomi-
als), and large v narrows the distance to the true model. We
will show that for large enough v, it is possible to achieve
the aforementioned two goals. To make the problem concrete,
we need the following assumptions on the data-generating
procedure.

Assumption 1: The number of additive components is fi-
nite and will be included into the candidate set in finite time
steps. In other words, there exists a “significant” variable set
S0 = {i1 , . . . , iD0 } such that 1) fd(x) 
= 0 for each d ∈ S0 , 2)
fd(x) ≡ 0 for d /∈ S0 , and 3) both D0 and iD0 are finite integers
that do not depend on sample size T .

We propose two steps for a practitioner targeting two goals
given below.

Step 1. (unbiasedness): This step aims to discover the signif-
icant variable set with probability close to one as more data is
collected. The approach is to minimize the objective function
in (10), and it can be efficiently implemented using the pro-
posed sequential algorithm in Section II-B with negligible error

(Theorem 1). In the case of equal weights wT ,t = 1/T , it can
be rewritten as

‖YT − ZT βT ‖2
2 + λ̃T

D̃∑

i=1

‖βT ,i‖2 (20)

where λ̃T = 2TλT . Due to Assumption 1, the significant vari-
able set S0 is included in the candidate set {1, . . . , D̃} for suf-
ficiently large T . Our selected variables are those whose group
coefficients are nonzero, i.e. S1 = {d : 1 ≤ d ≤ D̃, β̂T ,d 
= 0}.
We are going to prove that all the significant variables will be
selected by minimizing (20) with appropriately chosen λ̃T , i.e.,
S0 ⊆ S1 .

Step 2. (minimal variance): The second step is optional and
it is applied only when a practitioner’s goal is to avoid se-
lecting any redundant variables outside S0 . Suppose that we
obtain a candidate set of D̃ variables S1 (satisfying S0 ⊆ S1
from the previous step). Since a thorough search over all
subsets of variables is computationally demanding, we use a
backward stepwise procedure. We start with the set of se-
lected variables S1 , delete one variable at a time by mini-
mizing the MSE of a spline model with vT = T ζ number of
equally spaced knots. We note that vT in the optional Step 2
can be different from the v in SLANTS. Specifically, suppose
that at step k (k = 1, 2, . . .), the survived candidate models
are indexed by S(k) . We solve the least-squares problem for
each d̄ ∈ S(k)

ê
(k)
d̄

= min
μ,cd , j

T∑

t=1

⎛

⎝Yt − μ −
∑

d∈S

vT∑

j=1

cd,j bd,j (Xd,t)

⎞

⎠
2

(21)

where S = S(k−1) − {d̄}, and select d̄ = d̄∗k that minimize the

ê
(k)
d̄

with minimum denoted by ê(k) . Here A − B denotes the set
of elements that are in a set A but not in a set B. We let S(k) =
S(k−1) − {d̄∗k}. By default, we let S(0) = S1 and use ê(0) to
denote the minimum of (21) with S = S1 . If ê(k−1) − ê(k) <
(vT log T )/T , i.e., the gain of goodness of fit is less than the
incremented Bayesian information criterion (BIC) penalty [29],
then we stop the procedure and output S2 = S(k−1) ; otherwise
we proceed to the (k + 1)th iteration. We prove that the finally
selected subset S2 satisfies limT →∞ pr(S2 = S0) = 1.

Before we proceed to the theoretical result, we introduce some
necessary assumptions and their interpretations.

Assumption 2: There is a positive constant c0 such that
mind∈S0 ‖fd‖2 ≥ c0 .

Assumption 3: The noises εt are sub-Gaussian distributed,
i.e., E(ewεt ) ≤ ew 2 σ 2 /2 for a constant σ > 0 and any w ∈ R.

Assumption 4: Suppose that S1 is a finite subset of
{1, . . . , D̃}. In addition, the “design matrix” ZS1 satisfies
ZT

S1
ZS1 /T ≥ κ for a positive constant κ that depend only on v

(the number of splines).
We use op(1) and Op(1) to denote a sequence of random vari-

ables that converges in probability to zero, and that is stochasti-
cally bounded, respectively. We use O(1) to denote a bounded
deterministic sequence.
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Theorem 2: Suppose that Assumptions 1–4 hold. Then for
any given v it holds that

‖βS̃1
− β̂S̃1

‖2
2 ≤ 8c2v

−2p/κ + Op(T−1 log D̃)

+ Op(T−1) + O(T−2 λ̃
2
) (22)

for some positive constant c2 . If we further assume that log D̃ =
o(T ), λ̃ = o(T ), then there exists a constant c1 > 0 such that for

all v > c1c
−1/p
0 max{1, c

− 1
p ( 2 p + 1 )

0 }, limT →∞ pr(S0 ⊆ S1) = 1.
Remark 3: Theorem 2 gives an error bound between the es-

timated spline coefficients with the oracle, where the first term
is dominating. As a result, if v is sufficiently large, then it
is guaranteed that S0 will be selected with probability close
to one. We note that the constant c1 depends only on the
true nonlinear function and the selected spline basis func-
tion. In proving Theorem 2, Assumption 2–3 serve as standard
conditions to ensure that a significant variable is distinguish-
able, and that any tail probability could be well bounded. As-
sumption 4 is needed to guarantee that if the estimated co-
efficients β̂ produces low prediction errors, then it is also
close to the true (oracle) coefficients. This assumption is usu-
ally guaranteed by requiring λ̃ > c

√
T log D. See for example

[5], [30].
To prove the consistency in step 2, we also need the follow-

ing assumption (which further requires that the joint process is
strictly stationary and strongly mixing).

Assumption 5: supx{E(|Yt |r |X t = x)} < ∞ for some
r > 2.

The α-mixing coefficient is defined as αS (j) = sup{P (Ey

∩ Ex) − P (Ey )P (Ex) : Ey ∈ σ({(Yt̃ ,Xd,t̃ , d ∈ S) : t̃ ≤ n}),
Ex ∈ σ({(Yt̃ ,Xd,t̃ , d ∈ S) : t̃ ≥ n + j})}, where σ(·) denotes
the σ-field generated by the random variables inside the
parenthesis.

Assumption 6: The process {(Xd,t , d ∈ S1)} is strictly sta-
tionary, and the joint process {(Yt,Xd,t , d ∈ S1)} is α-mixing
with coefficient

αS1 (j) ≤ min{O(j−2.5ζ /(1−ζ )), O(j−2r/(r−2))},
where ζ has been defined in Step 2.

Theorem 3: Suppose that Assumptions 1–6 hold, then the
S2 produced by the above step 2 satisfies limT →∞ pr(S2 = S0)
= 1.

IV. NUMERICAL RESULTS

In this section, we present experimental results to demonstrate
the theoretical results and the advantages of SLANTS on both
synthetic and real-world datasets. The synthetic experiments
include cases where the data-generating model is fixed over
time, is varying over time, or involves large dimensionality.

A. Synthetic Data Experiment: Modeling Nonlinear Relation
in Stationary Environment

The purpose of this experiment is to show the performance of
SLANTS in stationary environment where the data-generating

Fig. 1. Four subplots show the estimated coefficients of splines, nonlin-
ear functions, and trace plots of automatically-tuned regularization param-
eter λt and innovation parameter τt . A demo video is available in the
supplement.

model is fixed over time. We generated synthetic data using the
following nonlinear model

X1,t = ε1,t

X2,t = 0.5X2
1,t−1 − 0.8X1,t−7 + 0.2ε2,t , t = 1, . . . , 500

where ε1,t and ε2,t are i.i.d. standard Gaussian. The goal is to
model/forecast the series X2,t . We choose L = 8, and place v =
10 quadratic splines in each dimension. The knots are equally
spaced between the 0.01 and 0.99 quantiles of observed data.
The initial L values of X2,t are set to zeros. We choose the step
size γt = 1/t to ensure convergence.

Simulation results are summarized in Fig. 1. The left-top
plot shows the convergence of all the 2 × 8 × 10 = 160 spline
coefficients. The right-top plot shows how the eight nonlinear
components fd, d = 1, . . . , 8 evolve, where the number 1-8 in-
dicate each additive component (splines). The values of each
function are centralized to zero for identifiability. The remain-
ing two plots show the optimal choice of control parameters
λt and τt that have been automatically tuned over time. In the
experiment, the active components f1 and f7 are correctly se-
lected and well estimated. It is remarkable that the convergence
is mostly achieved after only a few incoming points (less than
the number of coefficients 160).

B. Synthetic Data Experiment: Modeling Nonlinear Relation
in Adaptive Environment

The purpose of this experiment is to show the performance
of SLANTS in terms of prediction and nonlinearity identi-
fication when the underlying date generating model varies
over time.
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Fig. 2. Two plots stacked vertically, each consisting of four subplots that
show the estimated coefficients of splines, nonlinear functions, and trace plots
of automatically-tuned regularization parameter λt and innovation parameter τt

at time t = 491 and t = 1000 respectively. A demo video is available in the
supplement.

We have generated a synthetic data using the following non-
linear model where there is a change at time t = 500,

X1,t = ε1,t

X2,t = 0.5X2
1,t−1 − 0.8X1,t−7 + 0.2ε2,t , t = 1, . . . , 500

X1,t = u1,t

X2,t = −2X2
1,t−1 + exp(X1,t−7) + 0.2ε2,t ,

t = 501, . . . , 1000

where ε1,t and ε2,t are i.i.d. standard Gaussian. u1,t are i.i.d.
uniform on [−1, 1]. The goal is to model the series X2,t . Com-
pared with the previous experiment, the only difference is that
the forgetting factor is set to γ = 0.99 in order to track poten-
tial changes in the underlying true model. Fig. 2 shows that
SLANTS successfully tracked a change after the change point
t = 500. The top plot in Fig. 2 shows the inference results right

Fig. 3. Four subplots show the time series data, convergence of the coeffi-
cients, causality graph, and trace plot of the nonlinear functions. A demo video
is available in the supplement.

before the change. It successfully recovers the quadratic pattern
of lag 1 and linear effect of lag 7. The bottom plot in Fig. 2
shows the inference results at t = 1000. It successfully finds the
exponential curve of lag 7 and reversed sign of the quadratic
curve of lag 1. From the bottom left subplot we can see how the
autotuning regularization parameter decreases since the change
point t = 500.

C. Synthetic Data Experiment: Causal Discovery for
Multi-Dimensional Time Series

The purpose of this experiment is to show the performance
of SLANTS in identifying nonlinear functional relation (thus
Granger-type of causality) among multi-dimensional time se-
ries. We have generated a 9-dimensional time series using the
following nonlinear network model,

X1,t = ε1,t

X2,t = 0.6X3,t−1 + ε2,t

X3,t = 0.3X2
4,t−2 + ε3,t

X4,t = 0.7X5,t−1 − 0.2X5,t−2 + ε4,t

X5,t = −0.2X2
2,t−1 + ε5,t

X6,t = 0.5X6,t−2 + 1 + ε6,t

X7,t = 2 exp(−X2
7,t−2) + ε7,t

X8,t = 6X7,t−1 − 5X9,t−2 + ε8,t

X9,t = −X6,t−1 + 0.9X7,t−2 + ε9,t

where ε1,t and ε2,t are i.i.d. standard Gaussian. The initial
L values are set to zero. The goal is to model each dimen-
sion and draw sequential causality graph based on the estima-
tion. We choose L = 2, v = 10 and γt = 1/t. For illustration
purpose, we only show the estimation for X9,t in Fig. 3. The left-
top plot shows the 9 dimensional raw data that are sequentially
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TABLE I
THE TABLE SHOWS THE COMPUTATIONAL COST IN SECONDS WITH STANDARD

ERROR IN PARENTHESIS FOR SLANTS(A), SLANTS(B), GGLASSO, AND

GRPLASSO, WITH INCREASING T

obtained. The right-top plot shows the convergence of the
DLv = 9 × 2 × 10 = 180 coefficients in modeling X9,t . The
right-bottom plot shows how the nonlinear components f :
X6,t−1 �→ X9,t and f : X7,t−2 �→ X9,t evolve. Similar as be-
fore, the values of each function are centralized to zero for identi-
fiability. The left-bottom plot shows the causality graph, which is
the digraph with black directed edges and edge labels indicating
functional relations. For example, in modeling X9,t , if the func-
tion component corresponding to X6,t−1 is nonzero, then we
draw a directed edge from 6 to 9 with label 1; if the function com-
ponents corresponding to both X6,t−1 and X6,t−2 are nonzero,
then we draw a directed edge from 6 to 9 with label 12. The true
causality graph (determined by the above data generating pro-
cess) is drawn as well, in red thick edges. From the simulation,
the discovered causality graph quickly gets close to the truth.

D. Synthetic Data Experiment: Computational Cost

The purpose of this experiment is to show that SLANTS is
computationally efficient by comparing it with standard batch
group LASSO algorithm. We use the same data generating pro-
cess in the first synthetic data experiment, and let the size of
data be T = 100, 200, . . . , 1000.

We compare SLANTS with the standard R package “gr-
plasso” [31] and “gglasso” [32] which implement widely used
group LASSO algorithms. The package “gglasso” implements
the efficient active-set algorithm proposed in [33]. For the two
packages, at each time t, solution paths on a fixed grid of 100
penalties are calculated. To provide fair comparisons, we run
SLANTS in two ways. The first is the proposed algorithm
with adaptive tuned penalties. In the table, it is denoted as
SLANTS(a). The second is SLANTS without adaptive tuning
but also run on a fixed grid of 100 equivalent penalties as in
“grplasso” and “gglasso”, denoted as SLANTS(b). In comput-
ing solution paths, we adopted the techniques suggested in [33].
The results are shown in Table I.

Table I shows the time in seconds for SLANTS(a),
SLANTS(b), gglasso, and grplasso to run through a dataset
sequentially with different size T . Each run is repeated 30 times
and the standard error of running time is shown in parenthesis.
From Table I, the computational cost of SLANTS grows linearly

Fig. 4. A graph showing the raw data of (a) temperature (K), (b) relative
humidity (%), (c) east-west wind (m/s), (d) north-south wind (m/s), (e) sea level
pressure (Pa), and (f) precipitation (mm/day).

with T while gglasso and grplasso grow much faster. Moreover,
the prediction error is very similar for SLANTS(b), gglasso
and grplasso on the grid of penalties. This is understandable
as they calculate the solution to the same optimization prob-
lem. SLANTS(a) approaches the optimal prediction error as the
penalty parameter is stabilized. But SLANTS(a) is faster than
SLANTS(b) as it only calculates solutions to three penalties
at each time. In summary, both SLANTS(a) and SLANTS(b)
are computationally faster than existing batch algorithms with
comparable prediction performance.

The computational cost of SLANTS is slightly larger than
that of grplasso when T < 100. This is because SLANTS is
written purely in R, while the core part of gglasso and grplasso
is implemented in Fortran (which is usually a magnitude faster
than R). However, the growth of computational cost of SLANTS
is much slower than that of grplasso, and thus SLANTS is faster
for large T .

E. Real Data Experiment: Boston Weather Data From
1980 to 1986

In this experiment, we study the daily Boston weather data
from 1980 Jan to 1986 Dec. with T = 2557 points in total.
The data is a six-dimensional time series, with each dimension
corresponding respectively to temperature (K), relative humidity
(%), east-west wind (m/s), north-south wind (m/s), sea level
pressure (Pa), and precipitation (mm/day). In other words, the
raw data is in the form of Xd,t , d = 1, . . . , 6, t = 1, . . . , T . We
plot the raw data corresponding to year 1980 (i.e. Xd,t , d =
1, . . . , 6, t = 1, . . . , 366) in Fig. 4.

We compare the predictive performance of SLANTS with
that of a linear model. For brevity, suppose that we are go-
ing to predict the east-west wind. We chose the autoregressive
model of order 3 (denoted by AR(3)) as the representative linear
model. The order was chosen by applying Bridge criterion [34]
to the batch data of T observations. We started processing the
data from t0 = 10, and for each t = t0 + 1, . . . , T the one-step
ahead prediction error êt was made by applying AR(3) and
SLANTS to the currently available t − 1 observations. The cu-
mulated average prediction error at time step t is computed
to be

∑t
i=t0 +1 êi/(t − t0), where êi is the squared difference

between the true observation and our prediction at time step i.



5002 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 19, OCTOBER 1, 2017

Fig. 5. A graph showing (a) the cumulated average one-step ahead prediction
error of east-west wind (m/s) produced by two approaches, and east-west wind
decomposed into nonlinear functions of lagged values of (b) east-west wind,
(c) north-south wind (m/s), and (c) precipitation (mm/day). The functions were
output from SLANTS at the last time step t = T .

Fig. 6. A graph showing the raw data of the number of unemployment initial
claims.

The results are shown in Fig. 5(a). At the last time step, the sig-
nificant (nonzero) functional components are the third, fourth,
and sixth dimension, corresponding to EW wind, NS wind, pre-
cipitation, have been plotted in Fig. 5 (b), (c), (d), respectively.
From the plot, the marginal effect of X4,t on X3,t+1 is clearly
nonlinear. It seems that the correlation is low for X4,t < 0 and
high for X4,t > 0. In fact, if we let T = {t : X4,t > 0}, the cor-
relation of {X4,t : t ∈ T} with {X3,t+1 : t ∈ T} is 0.25 (with p
value 1.4 × 10−8) while {X4,t : t 
∈ T} with {X3,t+1 : t 
∈ T}
is −0.05 (with p value 0.24)

F. Real Data Experiment: The Weekly Unemployment Data
From 1996 to 2015

In this experiment, we study the US weekly unemployment
initial claims from Jan 1996 to Dec 2015. The data is a one-
dimensional time series with T = 1043 points in total. we plot
the raw data in Fig. 6.

Though the data exhibits strong cyclic pattern, it may be
difficult to perform cycle-trend decomposition in a sequential
setting. We explore the power of SLANTS to do lag selection
to compensate the lack of such tools.

We compare three models. The first model, AR(5), is linear
autoregression with lag order 5. The lag order was chosen by
applying Bridge criterion [34] to the batch data. The second and
third are SLANTS(1) with linear spline and SLANTS(2) with
quadratic splines. SLANTS(1) have 1 spline per dimension,
which is exactly LASSO with auto-tuned penalty parameter in

Fig. 7. A graph showing the cumulated average one-step ahead prediction
error at each time step produced by three approaches: linear autoregressive
model, SLANTS with linear splines, and SLANTS with quadratic splines.

SLANTS. SLANTS(2) have 8 splines per dimension. We allow
SLANTS to select from a maximum lag of 55, which is roughly
the size of annual cycle of 52 weeks.

Fig. 7 shows the cumulative average one-step ahead pre-
diction error at each time step by the above three approaches.
Here we plot the fits to the last 800 data points due to the
unstable estimates of AR and SLANTS at the beginning. The
results show that SLANTS is more flexible and reliable than
linear autoregressive model in practical applications. Both
SLANTS(1) and SLANTS(2) selected lag 1,2,52,54 as signif-
icant predictors. It is interesting to observe that SLANTS(2) is
preferred to SLANTS(1) before time step 436 (around the time
when the 2008 financial crisis happened) while the simpler
model SLANTS(1) is preferred after that time step. The fitted
quadratic splines from SLANTS(2) are almost linear, which
means the data has little nonlinearity. So SLANTS(1) performs
best overall.

V. CONCLUDING REMARKS

To address several challenges in time series prediction that
arises from environmental science, economics, and finance, we
proposed a new method to model nonlinear and high dimen-
sional time series data in a sequential and adaptive manner. The
performance of our method was demonstrated by both synthetic
and real data experiments. We also provided rigorous theoret-
ical analysis of the rate of convergence, estimation error, and
consistency in variable selection of our method.

Future work may include modeling and joint prediction of
X1,T , . . . ,XD,T . Currently, the prediction is separated into D
individual problems. The performance may be further enhanced
by considering potential correlations of innovations in each se-
ries. Adaptive placement of knots is another direction for future
work. The knot sequence should adequately cover the range of
data. In this paper, we assumed that the range of data is known.
In some practical applications, however, the range may vary
over time. In such case, it would be helpful to add a rejuvena-
tion step that routinely updates the empirical domain of the data
(and thus the knot placement).
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APPENDIX

We prove Theorems 1–3 in the appendix. For any real-valued
column vector x = [x1 , . . . , xm ], we let ‖x‖2 = (

∑m
i=1 x2

i )
1/2 ,

‖x‖A = xTAx denote respectively the �2 norm and matrix norm
(with respect to A, a positive semidefinite matrix).

Proof of Theorem 1

At time T and iteration k, we define the functions h(·) and

g(·) that respectively map β̂
(k)
T to r(k)

T and from r(k)
T to β̂

(k+1)
T ,

namely β̂
(k)
T

h�→ r
(k)
T , r(k)

T

g�→ β̂
(k+1)
T . Suppose that the largest

eigenvalue of I − τ 2AT +1 in absolute value is ξ (ξ < 1). We
shall prove that

‖g(h(χ1)) − g(h(χ2))‖2 ≤ ξ‖χ1 − χ2‖2 . (23)

It suffices to prove that ‖h(α1) − h(α2)‖2 ≤ ξ‖α1 −α2‖2
and ‖g(χ1) − g(χ2)‖2 ≤ ‖χ1 − χ2‖2 for any vectors
α1 ,α2 ,χ1 ,χ2 . The first inequality follows directly from the
definition of r(k) in the E step, and h(α1) − h(α2) = (I −
τ 2AT )(α1 −α2). To prove the second inequality, we prove

‖g(χ1,i) − g(χ2,i)‖2 ≤ ‖χ1,i − χ2,i‖2 , (24)

where χk,i (i = 1, . . . , L) are subvectors (groups ) of corre-

sponding to β̂
(k)
T ,i for either k = 1 or k = 2. For brevity we define

τ̃ = λT τ 2
T . We prove (24) by considering three possible cases:

1) ‖χ1,i‖2 , ‖χ2,i‖2 ≥ τ̃ ; 2) one of ‖χ1,i‖2 and ‖χ2,i‖2 is less
than τ̃ while the other is no less than τ̃ ; 3) ‖χ1,i‖2 , ‖χ2,i‖2 < τ̃ .
For case 1), g(χ1,i) = g(χ2,i) = 0 and (24) trivially holds. For
case 2), assume without loss of generality that ‖χ2,i‖2 < τ̃ .
Then

‖g(χ1,i) − g(χ2,i)‖2 = ‖g(χ1,i)‖2 = ‖χ1,i‖2 − τ̃

≤ ‖χ1,i‖2 − ‖χ2,i‖2 ≤ ‖χ1,i − χ2,i‖2 .

For case 3), we note that g(χk,i) is in the same direction of
χk,i for k = 1, 2. We define the angle between χ1,i and χ2,i to
be θ, and let a = ‖χ1,i‖, b = ‖χ2,i‖. By the Law of Cosines,
to prove ‖g(χ1) − g(χ2)‖2

2 ≤ ‖χ1 − χ2‖2
2 it suffices to prove

that

(a − τ̃)2 + (b − τ̃)2 − 2(a − τ̃)(b − τ̃) cos(θ)

≤ a2 + b2 − 2ab cos(θ). (25)

By elementary calculations, Inequality (25) is equivalent to
2{1 − cos(θ)}{(a + b)τ̃ − τ̃ 2)} ≥ 0, which is straightforward.

Finally, Inequality (23) and Banach Fixed Point Theorem
imply that there exists a unique fixed point β̂T and,

‖β̂(k)
T − β̂T ‖2 ≤ ξk

1 − ξ
‖β̂(1)

T − β̂(0)
T ‖2

which decays exponentially in k for any given initial value β̂
(0)
T .

Moreover, the fixed point β̂T is MAP, because each EM
iteration increases the value in (10) implicitly by increas-

ing the value in Q(β | β̂(k)
T ) (see the justification of EM

algorithm [35], [36]).

Proof of Theorem 2

The proof follows standard techniques in high-dimensional
regression settings [5], [30]. We only sketch the proof be-
low. For brevity, β̂T and β̂T ,d are denoted as β̂ and β̂d ,
respectively.

Let S̃1 = S0 ∪ S1 be the set union of truly nonzero set of co-
efficients and the selected nonzero coefficients. By the definition
of S̃1 , we have

‖Y − ZS̃1
β̂S̃1

‖2
2 + λ̃

∑

d∈S̃1

‖β̂d‖2

≤ ‖Y − ZS̃1
βS̃1

‖2
2 + λ̃

∑

d∈S̃1

‖βd‖2 . (26)

Define ρ = Y − Zβ, and ψ = ZS̃1
(β̂S̃1

− βS̃1
). We obtain

‖ψ‖2
2 ≤ 2ψTρ+ λ̃

∑

d∈S̃1

(‖βd‖2 − ‖β̂d‖2)

≤ 2ψTρ+ λ̃
∑

d∈S0

(‖βd‖2 − ‖β̂d‖2)

≤ 2ψTρ+ λ̃
√

|S0 |‖βS̃1
− β̂S̃1

‖2

≤ 2ψTρ+ λ̃
√

|S1 |‖βS̃1
− β̂S̃1

‖2

≤ 2‖ψ‖2‖ρ‖2 + λ̃
√

|S1 |‖βS̃1
− β̂S̃1

‖2

where the first inequality is rewritten from (26), the second and
fourth follow from S0 ⊆ S̃1 , the third and fifth follow from
Cauchy inequality. From the above equality and 2‖ψ‖2‖ρ‖2 ≤
‖ψ‖2

2/2 + 2‖ρ‖2
2 , we obtain

‖ψ‖2
2 ≤ 4‖ρ‖2

2 + 2λ̃
√

|S1 |‖βS̃1
− β̂S̃1

‖2 . (27)

On the other hand, Assumption 4 gives ‖ψ‖2
2 ≥ κT‖βS̃1

−
β̂S̃1

‖2
2 . Therefore,

κT‖βS̃1
− β̂S̃1

‖2
2 ≤ 4‖ρ‖2

2 + 2λ̃
√

|S1 |‖βS̃1
− β̂S̃1

‖2

≤ 4‖ρ‖2
2 +

2λ̃
2 |S1 |
κT

+
κT

2
‖βS̃1

− β̂S̃1
‖2

2

which implies that

‖βS̃1
− β̂S̃1

‖2
2 ≤ 8‖ρ‖2

2/(κT ) + 4λ̃
2 |S1 |/(κT )2 . (28)

In order to bound ‖βS̃1
− β̂S̃1

‖2 , it remains to bound ‖ρ‖2 .
Since ρt can be written as

εt +
∑

d∈S̃1

{fd(Xd,t) − f ∗
d (Xd,t)} + (μ − Ȳ ),

where (μ − Ȳ ) = Op(T−1) and ‖fd − f ∗
d‖∞ = O(v−p +

v1/2T−1/2) [5, Lemma 1], we obtain ‖ρ‖2
2 ≤ 2‖ε‖2

PX
+

c2Tv−2p + Op(1) for sufficiently large T , where c2 is a constant
that does not depend on v, and PX is the projection matrix of
ZS̃1

. On the other side,

‖ε‖2
PX

≤ ‖ZT
S̃1
ε‖2

2/(κT ).
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Therefore,

‖βS̃1
− β̂S̃1

‖2
2 ≤ 8c2v

−2p/κ + O(T−2‖ZT
S̃1
ε‖2

2)

+ Op(T−1) + O(T−2 λ̃
2
).

To finish the proof of (22), it remains to prove that ‖ZT
S̃1
ε‖2

2 =

Op(T log D̃). Note that the elements of ε are not i.i.d. con-
ditioning on ZS̃1

due to time series dependency, which is
different from the usual regression setting. However, for any
of the |S1 |v column of ZS̃1

, say zd,j , the inner product

zT
d,jε =

∑T
t=1 zd,j,tεt is the sum of a martingale difference

sequence (MDS) with sub-exponential condition. Applying the
Bernstein-type bound for a MDS, we obtain for all w > 0 that

pr

(∣∣∣∣∣

T∑

t=1

zd,j,tεt

∣∣∣∣∣ > w

)
≤ 2 exp

{
−w2/

(
2

T∑

t=1

ηt

)}
, where

ηt
Δ= varzd,j,tεt ≤ z2

d,j,tσ
2 ≤ sup

x∈[a,b]
{bd,j (x)}2σ2 .

Thus,
∑T

t=1 zd,j,tεt is a sub-Gaussian random variable for each
d, j. By applying similar techniques used in the maximal in-
equality for Gaussian random variables [37],

max
d∈S̃1 ,1≤j≤v

E(T−1/2zT
d,jε) ≤ O(T−1/2(log D̃)1/2).

Therefore,

‖ZT
S̃1
ε‖2

2 ≤ |S1 |vT max
d∈S̃1 ,1≤j≤v

{E(T−1/2zT
d,jε)}2

≤ Op(T log D̃).

To prove limT →∞ pr(S0 ⊆ S1) = 1, we define the event
E0 as “There exists d ∈ S0 such that β̂d = 0 and βd 
= 0”.
Under event E0 , let d satisfy the above requirement. Since
‖fd − f ∗

d‖∞ = O(v−p + v1/2T−1/2), there exists a constant

c
′
1 such that for all v ≥ c

′
1c

−1/p
0 and sufficiently large T ,

‖f ∗
d‖2 ≥ c0/2. By a result from [38], ‖βd‖2

2/v ≥ c
′
2‖f ∗

d‖2
2

holds for some constant c
′
2 . Then, under E0 it follows

that ‖β − β̂‖2
2 ≥ ‖βd‖2

2 ≥ c
′
2vc2

0/4 ≥ 16c2v
−2p/κ for all v ≥

c
′′
1c

−2/(2p+1)
0 , where c

′′
1 is some positive constant. This contra-

dicts the bound given in (22) for large T .

Proof of Theorem 3

Recall that the backward selection procedure produces a
nested sequence of subsets S2 = S(K ) ⊆ · · · ⊆ S(1) ⊆ S(0) =
S1 with corresponding MSE ê(k) (k = 0, . . . ,K), where 0 ≤
K ≤ |S1 | − |S2 |. In addition, S(k) = S(k−1) − {d̄∗k} for some
d̄∗k ∈ S(k−1) . It suffices to prove that as T goes to infinity, with
probability going to one i) S0 ⊆ S(k) for each k = 0, . . . ,K,
and ii) |S2 | = |S0 |.

Following a similar proof by [27, Proof of Theorem 1],
it can be proved that for any k, conditioned on S0 ⊆
S(k−1) , we have ê(k−1) − ê(k) = Op(vT /T ) if S0 ⊆ S(k−1) ,
and ê(k−1) − ê(k) = c + op(1) for some constant c > 0 if S0 
⊆
S(k−1) . Note that the penalty increment (vT log T )/T is larger
than Op(vT /T ) and smaller than c + op(1) for large T . By
successive application of this fact finitely many times, we

can prove that S0 ⊆ S(k) for each k = 0, . . . ,K, and that
|S2 | = |S0 | with probability close to one.

Derivation of Equation (12) in SLANTS

We need to compute

Q(β | β̂(k)
T ) = E

θT |(β̂(k )
T ,Y T )

log p(Y T ,θT | βT )

− λT

D̃∑

i=1

‖βi‖2

up to a constant (which does not depend on β). The complete
log-likelihood is

log p(Y T ,θT | β) = C0 − ‖θT − β‖2

2τ 2
T

= C1 − βTβ − 2βTθT

2τ 2
T

,

where C1 and C2 are constants that do not involve β. So
it remains to calculate E

θT |(β̂(k )
T ,Y T )

θT . Note that Y T |θT ∼
N(ZT θT ,W−1

T − τ 2
T ZT ZT

T ), θT |β̂(k)
T ∼ N(β̂

(k)
T , τ 2

T I). Thus,

θT | (β̂
(k)
T ,Y T ) is Gaussian with mean

E
θT |(β̂(k )

T ,Y T )
θT = r(k) .

It follows that

Q
(
β | β̂(k)

T

)
= − 1

2τ 2
T

‖β − r(k)‖2
2 − λT

D̃∑

i=1

‖βi‖2 .
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