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Meta Clustering for Collaborative Learning
Chenglong Ye, Jie Ding, Reza Ghanadan

Abstract

An emerging number of learning scenarios involve a set of learners/analysts each equipped with a unique dataset
and algorithm, who may collaborate with each other to enhance their learning performance. From the perspective
of a particular learner, a careless collaboration with task-irrelevant other learners is likely to incur modeling error.
A crucial problem is to search for the most appropriate collaborators so that their data and modeling resources
can be effectively leveraged. Motivated by this, we propose to study the problem of ‘meta clustering’, where the
goal is to identify subsets of relevant learners whose collaboration will improve the performance of each individual
learner. In particular, we study the scenario where each learner is performing a supervised regression, and the
meta clustering aims to categorize the underlying supervised relations (between responses and predictors) instead
of the raw data. We propose a general method named as Select-Exchange-Cluster (SEC) for performing such a
clustering. Our method is computationally efficient as it does not require each learner to exchange their raw data.
We prove that the SEC method can accurately cluster the learners into appropriate collaboration sets according to
their underlying regression functions. Synthetic and real data examples show the desired performance and wide
applicability of SEC to a variety of learning tasks.

Index Terms

Distributed computing; Fairness; Meta clustering; Regression.

I. INTRODUCTION

Collaborative learning has been an increasingly important area that aims to build a higher-level, simpler,
and more accurate meta model by combining the data information from various learners. The data held
by each learner can be regarded as a sub-dataset of an overarching dataset. These sub-datasets are usually
heterogeneous and stored in decentralized locations due to various reasons, including: 1) each sub-dataset
is from a unique research activity with domain-specific features; 2) the data is too large to be stored
in one location; 3) the data privacy concern entails separate accesses to sub-datasets. This motivates the
following general problem: If each learner holds a unique dataset that is not to be shared with others,
how can they collaborate with each other in an efficient and robust manner? Here, the efficiency means
both computational efficiency as a result of distributed computing resources, and statistical efficiency
due to enlarged effective sample size; the robustness is against potential adversarial learners or irrelevant
sub-datasets during the collaborative learning. This general question has led to several recent research on
collaborative learning which will be elaborated in Section I-A.

In this paper, we aim to answer the following question: for any particular learner A, how should a
particular learner choose collaborators? In particular, we suppose that each sub-dataset is of a supervised
nature, consisting of predictor-label pairs (x, y). A learner tends to collaborate with those whose datasets
exhibit the same (or similar) underlying x-y relationship. To that end, we propose to study the novel
problem of ‘clustering for supervised relations’. The idea is that sub-datasets exhibiting similar functional
relationships (between x and y) should fall into the same class, so that their combination may be used for
collaborative learning at a later stage. An alternative view of such a clustering is to categorize a number of
sub-datasets into few meta-datasets, and thus offering better learning quality without inducing estimation
biases. As such, we call the problem ‘meta-clustering’. Different from the classical learning problem of
data-level clustering, our goal here is to cluster datasets instead of single data points.
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We focus on the regression scenario, where each sub-dataset can be modeled by f(X) := E(Y |X)
for some function f , and sub-datasets in the same cluster share the same (latent) function f . A vanilla
algorithm is for a particular learner to enumerate all the possible collaborators, and for each combination
performs a joint (distributed) learning, and then apply cross-validations to identify the most appropriate
collaborators. We will propose a meta-clustering algorithm that is much more computationally efficient
than the vanilla method. The main idea is to let each pair of learners exchange their already-learned models,
and evaluate them on the private data to calculate a similarity measure of the two sub-datasets/learners.
Then a similarity matrix is constructed and a spectral clustering is performed based on that matrix. We
show theoretical guarantees of the algorithm when the sample size of each sub-dataset is sufficiently
large. Moreover, the number of clusters does not need to be specified in advance, and it can appropriately
identified in a data-driven manner. Figure 1 illustrates the main idea of the proposed method. The method
consists of three main steps, where the first is to train preliminary local models for each learner, the
second is to exchange trained models among learners and build a similarity matrix, and the third is to
perform a clustering based on the constructed matrix. A learner would then collaborate with those in the
same cluster.

The contribution of our work is mainly three-fold. First, we propose to study the problem of clustering
for datasets based on the underlying supervised relations. This problem, also named as ‘meta-clustering’,
has not been studied in prior work to our best knowledge. The problem naturally fits the emerging need
of robust collaborations in adversarial learning scenarios. Second, we propose a computationally efficient
and theoretically guaranteed algorithm for meta-clustering. Third, the proposed method can be used in
general supervised regression tasks that involve nonlinear and nonparametric learning models, and it can
be used for a variety of learning tasks even if learners are not sure about the existence of latent functions.
For example, we will show its use to significantly enhance the prediction performance under data fairness
constraints, where approximately 50% prediction error reduction is achieved without using any sensitive
variable.

A. Related work
We briefly describe the connection between the proposed framework and existing research topics.
Federated learning. When data is stored across decentralized servers/devices, directly sharing local

datasets compromises data privacy. Federated learning (also known as collaborative learning) is a technique
in machine learning that trains a global model on distributed datasets without compromising data privacy.
In particular, the parameters of the local models, rather than the local datasets, are exchanged to generate
the global model. Interested readers are referred to [21], [24], [26] and the references therein. The proposed
meta-clustering framework serves as a tool of preliminary analysis for selecting “qualified” collaborators
before applying any collaborative learning algorithm.

Data Integration. Data integration is a method that integrates information from different data sources.
Either by sharing model parameters or directly combining datasets, data integration methods improve
statistical performance when a global model (type) is assumed. Many methods have been proposed. For
example, [27] developed a fused lasso approach to to learn parameter heterogeneity in linear model on
different datasets. [22] proposed an integrative method of linear discriminant analysis (LDA) for multi-
type data, which is theoretically shown to improves classification accuracy over the performance of LDA
on a single data source. [18] proposed a Bayesian hierarchical model, in a variable selection framework,
that integrates three types of data in gene regulatory networks: gene expression data, ChIP binding data
and promoter sequence data.

In comparison to most data integration methods where statistical models (and parameters) are specified
in each sub-dataset and thus estimated parameters are exchanged, the meta-learning framework allows
different models for each learner and the estimated models are to be exchanged. No assumption is imposed
on the form of the learning models. For example, one learner can use linear model to fit his/her sub-dataset
while another leaner can use quadratic models. Indeed, for the purpose of clustering, the proposed SEC
algorithm only exchanges the predicted values, without exchanging the parameters or the models.
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Fig. 1: An illustration of meta clustering of a set of learners/datasets, based on their underlying supervised
relations.

Divide-and-conquer. Divide-and-conquer is a widely used method that involves multiple sub-datasets.
It often partitions a large dataset into sub-datasets and then combines results (e.g., p-values, coefficients,
etc.) obtained from each sub-dataset. The “conquer” step not only boosts computational efficiency but also
adapts to different frameworks. For example, [35] proposed a method that randomly partitions the dataset
into sub-datasets and fits a kernel ridge regression estimator in each sub-dataset. The simple average
of the local predictors is used as the global estimator, which achieves minimax optimal convergence
rates. [23] proposed the DFC (Divide-Factor-Combine) framework for noisy matrix factorization, which
improves the scalability and enjoys estimation guarantees. [10] proposed a distributed PCA (Principle
Component Analysis) algorithm for data stored across multiple locations, which performs similarly as
the PCA estimator based on the whole dataset. Different assumptions of the distributed sub-datasets are
also investigated, such as independent cross-sectional datasets [31], independent sources/studies [2], [5],
network meta-analysis [32], high-dimensional correlated data [17], data with responses/predictors having
multiple measurements across different experiments [14], and so forth.

One goal of divide-and-conquer is to reduce computational cost via parallel computing across the sub-
datasets, where one learner has access to all the sub-datasets, in contrast to each learner having access to
one sub-dataset in our framework. In addition, divide-and-conquer methods assume that the underlying
relationship between the response and the predictors for each sub-dataset is the same, thus combining
results from all the sub-datasets is reasonable. However, the datasets in distributed storage may have
potential subgroups, rather than the seemingly unified one label. For example, a dataset from one single
study may be stored in distributed servers, and some servers may have data damaged or altered due
to systematic problems or hacker attacks; an insurance claim dataset may consist of sub-datasets from
different states, where sensitive variables (e.g., age, gender) are different according to different state laws;
for data integration from different sources, data analysts are faced with issues of verifying data authenticity
and relevance; in meta analysis and clinical trials, exploring or test heterogeneity is of great importance
for statistical reproducible inference. In such cases, the underlying relationship between the response and
the variables may be different across all sub-datasets. Identifying potential clusterings of the subs-datasets
is of great importance for bias reduction and robust/efficient modeling. For divide-and-conquer methods,
meta-clustering can be applied to analyze either if there are potential cluster structures on the whole
dataset. If there are some cluster structures, then the random splitting in divide-and-conquer may lead to
modeling bias.

The remainder of the paper is outlined below. In Section II, we describe the problem and propose the
meta clustering method. In Section III-B, we present theoretical properties of the proposed method. In
Section IV, we demonstrated a potential use of the method in fairness learning scenarios. In Sections
V and VI, we show the performance of our method through more experimental studies. The proofs are
included in the Appendix.
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II. PROBLEM

Suppose the dataset D := {Di}Li=1 is the union of L sub-datasets, where the subscript i = 1, ..., L
represents a natural label within the dataset D. For example, Di can represent the sub-dataset stored in
the i-th location/server, the sub-dataset from the i-th study in a meta-analysis, or the sub-dataset from the
i-th patient in the same research project. We assume each sub-dataset Di is handled by a learner li, who
considers a set of available methods Mi =Mp

i ∪Mnon
i for data analysis. Here Mp

i (Mnon
i ) denotes the

parametric (nonparametric) models in Mi. We distinguish these two model classes mainly for technical
convenience. Briefly speaking, we will assume that a parametric model (e.g., a linear regression model)
has a better rate of convergence than a nonparametric one (e.g., a decision tree), and the latter is consistent
in estimation. More detailed assumptions are included in the Appendix. In the degenerate case where there
is only one learner, i.e., l1 = l2 = · · · = lL, the collaborative learning setup can be potentially used to
enhance the computational efficiency. We will often use small letters to denote observed data and capital
letters to denote random variables.

Suppose the sub-dataset Di consists of ni independent data points, denoted as Di = {(yi,j,xi,j) : yi,j ∈
R,xi,j ∈ Rp}ni

j=1, from the underlying model

Yi = fi(Xi) + εi, (1)

where X1, ...,XL are p-dimensional random variables i.i.d. with cumulative density function PX(·), and
the noise εi ∼ N(0, σ2

i ) is independent of Xi. Moreover, for any i1, i2 ∈ {1, ..., L}, εi1 is independent of
Xi2 . We require that the L sub-datasets consist of the same p predictors.

Let n := n1 + ... + nL denote the overall sample size from L sub-datasets. Throughout the paper,
we assume that there exist K (fixed but unknown) data generating functions, denoted by fi ∈ F =
{f (1), . . . , f (K)}. The learning model for estimating f (i) for any i = 1, ..., K can be either parametric or
nonparametric. Denote the Euclidean norm as || · ||. Define the L2 norm ‖f‖2 =

√∫
f(x)2PX(dx) and

the L∞ norm ||f ||∞ = ess sup |f | = inf{c ≥ 0 : |f(X)| ≤ c a.s.}. Two models f (i) and f (j) are different
if ||f (i) − f (j)||∞ > 0.

Our goal is to correctly cluster the L sub-datasets into K clusters, where the underlying regression
functions corresponding to the sub-datasets in the same cluster are the same.

III. METHOD

The intuition of our method is that, for any pair of learners, if their sub-datasets correspond to the same
data generating function, then their estimated functions (e.g. by cross validation within each sub-dataset)
should perform similarly when applied to each other’s sub-dataset. We propose the following three-step
method where learners communicate with each other on their estimated regression functions. The method
may be used as a pre-screening step for identifying relevant collaborators for downstream collaborative
learning.

A. Algorithmic Description
We propose the following Select-Exchange-Cluster (SEC) algorithm.

Step 1 [Select]: Each learner uses its own sub-dataset to learn a model from a set of candidate methods
Mi. Suppose that each learner the half-half cross validation to perform model selection. In particular,
learner li splits the data Di into two parts Di,1 and Di,2 of equal size ni,1 = ni,2 = ni/2 where we assume
ni is even for simplicity. The learner applies each candidate method δ ∈ Mi to the training set Di,1
and obtains the corresponding estimator f̂ni,1

. For learner li, denote the best method δi as the one that
minimizes the mean squared error (MSE) on the test set Di,2 , i.e.,

δi = arg min
δ∈Mi

∑
(y,x)∈Di,2

(
y − f̂ni,1

(x)
)2
/ni,2. (2)
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The “best” method δi is then applied to the whole data Di to estimate the underlying function fi. Denote
the resulting estimated function as f̂ni

and its fitted mean squared error as

êi :=
∑

(y,x)∈Di

(
y − f̂ni

(x)
)2
/ni.

To summarize, for each learner li, we have the non-shared data Di and the sharable information {δi, f̂ni
, êi}.

Step 2 [Exchange]: For any two learners, they exchange the sharable information {δi, f̂ni
, êi}. In particular,

denote vij as the dissimilarity between any two learners (li, lj) with i 6= j. We apply the i-th learner’s
best estimator f̂ni

to the j-th learner’s dataset Dj and obtain its prediction loss

êi→j :=
1

nj

∑
(y,x)∈Dj

(
y − f̂ni

(x)
)2
,

where the subscript i→ j denotes the information flow from li to lj . Similarly, we apply f̂nj
to the dataset

Di and obtain the prediction loss êj→i. The dissimilarity vij is then defined as the difference between
their best estimators:

vij = |êi→j − êj|+ |êj→i − êi|, (3)

where we have vij = vji for any i 6= j. When i = j, the self-dissimilarity of a learner li is vii := 0.
Step 3 [Cluster]: Based on the dissimilarity vij , a similarity matrix is constructed, which is used to cluster
the L learners. In particular, we calculate a matrix S where the (i, j)-th component is sij := exp(−avij).
Here, a is a tuning parameter for computational convenience when mini,j vij is large and thus sij are
negligibly small for all pairs of (i, j). The similarity matrix S is symmetric with sii = 1 for i = 1, . . . , L.
Let P = {1, ..., L}. For a given K, we will find a partition P := ∪Ki=1Si by applying a spectral clustering
algorithm to the matrix S and partition the L learners into K groups. For completeness, we summarize
the clustering step (Step 3) in Algorithm 1.
When K is unknown, we add a penalty term K · λn in to the k-means in step 2.d) of Algorithm 1, so
that we jointly minimize

K∑
t=1

∑
i,j∈Pt

1

2|St|
||u(i) − u(j)||2 +K · λn (4)

over all possible partitions P and a grid of values of K. Here, u(i) denotes the i-th row of U∗ defined in
Algorithm 1.
Remark 1 (Spectral clustering). There are different variants of spectral clustering in the literature. We build
on the work of [25] due to technical convenience. We will show in Section III-B that our construction of
the similarity matrix theoretically guarantees the performance of applying the spectral clustering algorithm.
Remark 2 (Selection of K). There are many ways to choose the penalty term in parametric models [6].
In the context we consider, picking an appropriate penalty term may be difficult because the rates of
convergence of nonparametric methods in Step 1 may not be known. Here we suggest use the gap statistic
[29] that looks for the elbow point in the curve of the sum of within-cluster mean-squared errors (i.e. the
first term in (4) against different K’s.
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Algorithm 1 Pseudocode for the Step 3 of SEC algorithm
Input: Number of learners L, learners/datasets {Di}Li=1, number of clusters K (optional).
Output: K clusters of the learners {Si}Ki=1 as represented by a partition of the set {1, 2, ..., L}, learner’s
cluster labels ci, i = 1, . . . , L, estimates of each underlying regression function f̂ (j), j = 1, ..., K, and K
itself (if not given as in put).

1) Calculate the similarity matrix S ∈ RL×L
+ , where each sij = exp(−avij) and vij is given by (3).

2) If k is given, conduct the spectral clustering:
a) Calculate the Laplacian L of S: L = D−1/2SD−1/2, where D is a diagonal matrix with Dii =∑L

j=1 sij .
b) Compute the K largest eigenvectors of L, u1, . . . ,uK . Denote U = [u1, . . . ,uK ] ∈ RL×K .
c) Standardize each row of U to have unit `2 norm. Denote the standardized matrix as U∗.
d) Apply k-means clustering to the rows of U∗ into k clusters, and record the labels ci, i = 1, . . . , L.

3) Else:
a) Record the eigenvalues of S sorted from small to large, and apply the Gap statistics to determine

the K.
b) Go back to 2).

4) Output the estimates.

Remark 3 (Future prediction). Though prediction is not the main focus of this paper, we suggest the
procedure below to perform prediction once we obtain the clustering results from SEC. For any particular
learner i, suppose that it belongs to cluster Sk. Other learners in the same cluster transmit their fitted
model f̂nj

to learner i. To make predictions for an incoming new observation x, we use∑
i∈Pk

ni∑
i∈Sk

ni
f̂ni

(x) (5)

as the prediction of the response. Note that the above prediction does not require direct sharing of datasets
among learners. We emphasize that the obtained clustering results may also be used for more sophisticated
downstream collaborative learning methods, where a learner only interacts with others in the same cluster.

B. Theoretical Properties
The following theorem shows that SEC can consistently identify the correct clusters for a large sample

size.

Theorem 1. Under assumptions in the Appendix, the labels c1, . . . , cL produced by SEC satisfy ci = cj if
and only if fi = fj , for any i, j, with probability going to one as n→∞.

IV. DATA FAIRNESS

The proposed method can be applied to the data fairness problem. Fairness has been an enduring societal
issue across different areas. Recently in statistics and machine learning, fairness has gained its attention in
data itself and in machine learning. Biases in data collection and measurement, and methods/algorithms
based on these data will not address (sometimes even worsen) the inequity for historically disadvantaged
groups. Many works have been done to mathematically define fairness, discover unfairness, and algo-
rithms are proposed to achieve fairness. For example, [8] treated individual fairness as classifying similar
individuals similarly, where the individual similarity is captured by hypothetical task-specific metrics. [16]
proposed a criterion, equal opportunity (or equalized odds), with respect to a particular sensitive variable,
and demonstrated a way to adjust any predictor to remove such discrimination. [33] devised positive rate
disparity and proposed a method that avoids disparities in mistreatment and treatment simultaneously. [30]
compared differences among 20 fairness definitions for classification problems, explaining the rationale of
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each definition and demonstrating each with a single case-study. For more detailed definitions of fairness,
interested readers are referred to [13], [30] and the references therein. Based on the maximum likelihood
principle, [19] proposed a prejudice remover regularizer (by considering the mutual information between
the response and the sensitive variable) to any probabilistic models for classification. [34] proposed a
classification algorithm that achieves both individual fairness and group fairness. [20] studied penalized
linear regression with fairness constraints (i.e., the coefficient of determination of the sensitive variables
over the predicted values using non-sensitive variables), which can be reduced to a convex optimization
problem that has an exact solution.

We consider a linear regression setting where the sensitive variable is independent from other variables.
In particular, we generate a dataset D that consists of 50 sub-datasets {Di}50i=1, each with size ni = 50
from the linear model: Y = X1 + 2X2 − 2X3 + 2X4 + cSi + ε, where X ∼ N(0, I4) is the non-sensitive
variable, ε ∼ N(0, 1) is the random noise, and Si is the sensitive variable. Here we consider different
scales of the coefficient of the sensitive variable, c ∈ {0.5, 1, 2, 3, 4, 5, 6, 7}. The sensitive variable Si is
generated from a standard normal N(0, 1) distribution and is set to be fixed for each given i. This setting
of a fixed value as a sensitive variable is sensible and reasonable in practice for the data fairness problem
when there are multiple measures for the same subject (each subject is a natural learner). For example,
if D is a longitudinal data and each sub-dataset represents a person, then the subject-specific sensitive
variable (gender, race, age, home location, etc.) is the same for each person. We set Si as continuous
to add more generality, since categorical variables can be treated as continuous by introducing dummy
variables in linear regression. We split the dataset into training set of 30 learners (e.g., {Di}30i=1) and test
set of 20 learners (e.g., {Di}50i=31). For each learner in the test set, we further split it into two parts of
the same size (e.g., Di = D1

i ∪D2
i ) (the reason behind such splitting is that we need extra data points to

cluster the learners in the test set). Then the dataset D is reorganized into the following three sets: the
training set {Di}30i=1, the test set {D1

i }50i=31, and the validation set {D2
i }50i=31.The random data splitting is

repeated 50 times.
For the training set, in the existence of a sensitive variable, we consider three methods of building a

model: oracle, fairness, SEC-Fairness. The oracle method is to directly build a linear regression model
on the training set using the sensitive variable, i.e., without considering fairness constraints, which has
the best predictive performance. The fairness method is to build a linear regression model on the training
set without using the sensitive variable, since the sensitive variable is not allowed to be used in the
modeling procedure (sometimes even not available in practice). The SEC-Fairness method finds potential
groupings among the sub-datasets in the training set before building models without the sensitive variable.
In particular, it first uses the SEC algorithm on the training set to cluster these 30 learners {Di}30i=1 into
groups. Then it uses the test set {D1

i }50i=31 to cluster the 20 learners into the clusters identified in the
training set.1 In the SEC algorithm, for simplicity, each learner li considers two candidate modeling
methods: Random Forest [4] (RF) and linear regression (LR), i.e., Mi = {RF,LR}, based on which the
similarity matrix is constructed.

For the validation set, we evaluate the predictive performances of the models by the mean square error
(MSE), which are presented in Table I. As shown in the table, when the importance (its coefficient c)
of the sensitive variable is high, SEC-Fairness overall reduces the MSE of Fairness by about 50%. One
possible reason is as following. The linear function between Y and the variables {X1, ..., X4} actually
only differs in the intercept per learner. The similarity between two learners as in the SEC algorithm will
be small if the different of their sensitive variables |Si − Sj| is large. It is then more likely that SEC
divides those with similar values of the sensitive variable into the same cluster. We still believe that the
SEC-fairness method satisfies the fairness constraint since it does not utilize the sensitive variable at all.
In addition, the sensitive variable is independent from the non-sensitive variables.

The oracle method is very stable in MSE (around 1) over different values of c, which is under

1To measure the similarity between a learner li and a group, we use the sum of the similarity of li with each individual learner in that
group. Then the leaner li belongs to a group if its similarity with the group is larger than its similarity with any other group.
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SEC-Fairness Fairness Oracle

c MSE K̂ MSE MSE

0.5 1.18 (0.01) 2.6 (0.49) 1.34 (0.01) 1.05 (0.01)

1 1.45 (0.04) 2.72 (0.57) 2.01 (0.05) 1.04 (0.01)

2 1.98 (0.07) 2.66 (0.48) 4.31 (0.11) 1.00 (0.01)

3 2.90 (0.12) 2.92 (0.27) 8.65 (0.25) 1.10 (0.01)

4 12.18 (0.91) 2.18 (0.88) 21.01 (0.79) 0.93 (0.01)

5 8.94 (0.84) 2.98 (0.73) 23.70 (1.09) 0.96 (0.01)

6 13.51 (0.76) 2.58 (0.49) 42.36 (1.32) 0.98 (0.01)

7 22.71 (2.06) 2.46 (0.73) 45.42 (1.76) 1.00 (0.00)

TABLE I: Predictive performances of the three methods for the data fairness example. The values in
the parentheses are the standard error of the averaged MSE and the standard deviation of the estimated
number of clusters K̂ respectively over 50 replications.

expectation. When c is large, though performing better than Fairness, SEC-Fairness performs not too
well if compared to the oracle method. One reason can be seen from the estimated number of clusters
K̂, which is in the interval [2, 3]. In this example, we select K̂ by the gap statistic, with the goal of
minimizing the with-in group distance. But here there is no such a true value of K (or in some sense we
can treat the true K as 30 for the training set) since every learner/sub-dataset has a unique sensitive value
and can be treated as a cluster itself. If we specify a large K before applying the SEC algorithm, the
performance of SEC-Fairness should be better in this example. More generally, if the learner focuses more
on improving prediction performance rather than finding potential groupings, we suggest to manually set
a large K before applying the SEC algorithm, or try a grid of values of K and pick the one with the best
predictive performance.

V. SIMULATIONS

In this section, we present three simulation settings. Each example in the simulations is repeated 50
times. Theoretically speaking, the data are not needed to be standardized because only the functional
relation between Y and X matters. So one cluster may contain two datasets of which the responses
or predictors are not in the same scale or range. However, the nonparametric method usually requires a
compact support, which may cause some computational issues. Throughout the experiments, we preprocess
X and Y in each learner by standardization.

A. Simulation 1: Clustering accuracy
This example is to demonstrate that the clustering accuracy of our method. A clustering result is

called accurate if both the number of clusters is correctly identified and each learner’s label matches the
underlying truth (up to a permutation).

Suppose that there are 20 learners, each with 50 observations of (y, x), where x follows a standard
Gaussian distribution with dimension p = 5, 10, 20. The data of the first 10 learners are generated from
the underlying model y = f1(x) + ε1 = βT

1 x + ε1, where ε1 ∼ N(0, σ2), and β1 ∈ Rp. The data of the
remaining 10 learners are generated from y = f2(x) + ε2 = βT

2 x+ ε2, with ε2 ∼ N(0, σ2), and β2 ∈ Rp.
We randomly generate β1 and β2 from the standard Gaussian distribution (both of β1 and β2 are set as
fixed in each replicated experiment such that β1 6= β2). The signal-to-noise ratio (SNR) is defined by
E(‖β‖2)/E(ε2), which reduces to p2/σ2 in this case. We set the levels of SNR to be one of the following:
20, . . . , 27. In the SEC algorithm, let each learner consider two candidate methods: LASSO [28] (with
built-in half-half cross validation to select the tuning parameter) and Random Forest (with 50 trees and
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depth 3). We apply the SEC algorithm to cluster the 20 learners. The averaged clustering accuracy over
50 replications is presented in Figure 2. It can be seen that the clustering accuracy increases as the SNR
increases. Also, for a fixed SNR, smaller p tends to have better clustering accuracy. This is mainly because
a more parsimonious model suffers from more estimation variance given the same amount of data. We
also see that, for fixed p, the accuracy curve tends to be flat when SNR is larger than 25, showing the
robustness of the SEC algorithm against low noise levels. We also present the result of a replication of
the simulation with p = 5 and SNR= 24, with clustering accuracy being 100. The gap statistics used to
choose the number of clusters K is plotted in Figure 3a and the eigenvectors in the spectral clustering
algorithm is plotted in Figure 3b.
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Fig. 2: Clustering accuracy of the SEC algorithm for Simulation 1.
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Fig. 3: An illustration of the clustering results, based on a realization with p = 5, SNR=4.

B. Simulation 2: robustness against candidate models in the Cross Validation
In this example, we demonstrate that our method is robust against candidate models in the cross

validation part of the Select step. Suppose that there are 20 learners, {li}20i=1, each with a sub-dataset Di

containing ni = 100 observations and p = 500 predictors. We use the following two benchmark datasets
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described in [3], [11]. The sub-datasets of the first ten learners are generated from

y = f1(X) + ε1 =

√
X2

1 + (X2X3 −
1

X2X4

)2 + ε1,

and the sub-datasets of remaining ten learners are generated from

y = f2(X) + ε2 = arctan(X2X3 −
1

X2X4

)/X1 + ε2,

where X1 ∼ U(0, 100), X2 ∼ U(40π, 560π), X3 ∼ U(0, 1), X4 ∼ U(1, 11), and ε1, ε2 ∼ N(0, 0.01)
are independent. The remaining 496 predictors {X5, ..., X500} follow a standard multivariate gaussian
distribution N(0, I496).

For each learner, we consider the pool of candidate models: Random Forest, K nearest neighbors,
Support Vector Regression [7], Artificial Neural Network, Gradient Boosting [12], LASSO, Least Angler
Regression [9](LARS), Elastic Net [36] (EN), Ridge Regression (Ridge), i.e.,

Mi = {RF, KNN, SVR, NN, GB, Lasso, Lars, EN, Ridge}

for i = 1, ..., 20. To show the robustness of our procedure against the number of candidate models and
against the types of candidate models, we consider four different choices of Mi: {RF, KNN, SVR, NN,
GB, Lasso, Lars, EN, Ridge}, {RF, KNN, SVR, GB, Lasso, Lars, EN}, {RF, KNN, GB, Lasso, Lars},
{RF, GB, Lasso}, and {GB}.

The results are presented in Table II. The clustering accuracy is stable over different choices of Mi.
We can see the robustness of our method against both the number of candidate models and the type of
candidate models.

To evaluate whether the SEC algorithm improves prediction accuracy, we focus on the first leaner l1
in this example. We generate a test set Dtest with size ntest = 100 that is generated from the model
y = f1(X) + ε1. We treat this test set as a test set for the first learner l1. We consider the following
two modeling methods: No collaboration and Collaboration. The “Collaboration” method firsts applies
the SEC algorithm and identify those learners that are from the same cluster as l1. Then we obtain the
prediction for the test set Dtest based on the simple average of the estimated predictors from those learners,
as described in Equation (5). The “No Collaboration” method simply fits l1’s favored method on its own
sub-datasetD1and applies the estimator on the test set Dtest to make predictions. The mean squared error
of the predictions by the above two methods are also shown in Table II. The prediction accuracy of the
two methods are also stable across different choices ofMi, in terms of both the size ofMi and the types
of methods in Mi. When the number of candidate models increases in Mi, the prediction accuracy of
the “Collaboration” method increases. This is because more choices of candidate models in the Cross-
validation part of the Select Step enables us to learn better the functional relation between the response
and the predictors, so that the similarity matrix can better capture the true underlying clusters.

Collaboration No collaboration

|M|i Accuracy K̂ MSE MSE

1 66.0 2 0.100(0.056) 0.133(0.038)

3 74.0 2 0.095(0.053) 0.131(0.042)

5 58.0 2 0.087(0.049) 0.125(0.044)

7 70.0 2 0.096(0.056) 0.134(0.051)

9 64.0 2 0.060(0.018) 0.112(0.034)

TABLE II: Prediction performance of our method vs. classical methods for the robustness against candidate
models example. The column “Accuracy” is the clustering accuracy of the SEC algorithm. The value in the
parenthesis is the standard error of the averaged MSE over 50 replications, and K̂ denotes the estimated
number of clusters.



11

VI. REAL DATA APPLICATIONS

In this section, we apply the SEC algorithm in two real data examples.

A. Application 1: more accurate prediction in CT Image Data
We investigate the CT Image Data [15] that consists of 53500 CT slices and 385 variables. These 53500

CT slices are obtained from 97 CT scans, where 74 patients (43 male and 31 female) took at most one
thorax scan and at most one neck scan. The response variable is the relative location of the CT slice on
the axial axis. This dataset has a natural sub-dataset structure since many CT slices are from the same
CT scan that can be treated as a sub-dataset.

We divide the dataset into 97 learners, each representing a CT scan. Our goal is to find whether
there exists any potential clustering structure (and its corresponding variable) that improves both scientific
understanding and predictive performance. We randomly divide these 97 learners into two parts: the
training set (64 learners) and the test set (33 learners). Similar with the data fairness example, for each
of the 33 leaners in the test set, we divide the sub-dataset into two sets of equal size.

For the training set, we consider two methods: clustering and no clustering. The “no clustering” method
directly trains a Random Forest model on the training set. The “clustering” method first applies the SEC
algorithm to cluster the learner in the training set, with Mi = {RF,LASSO} for i = 1, ..., 64. Then
it trains a Random Forest model separately in each identified clusters using the pooled data. For the
validation set, the “no clustering” method directly applies the trained random forest model and obtain
the mean squared error. The “clustering” method first finds the similar learners for each learner in the
validation set. Then it applies the trained random forest model corresponding to that cluster to the leaner.

We repeat the data splitting 50 times and summarize the results in Table III. It can be seen that the
“clustering” method significantly outperforms that of the “no clustering” method. A right-sided paired
t-test of the difference in MSE between “clustering” and “no clustering” produces a p-value 1.77e-14. To
summarize, the SEC algorithm can be applied to datasets that can be naturally divided into sub-datasets,
to improve prediction accuracy.

We also tried to look for more scientific understanding of the identified clusters on the training set.
However, the dataset does not contain information of the gender of the patient, whether the CT scan is
from thorax or neck. Indeed, this type of patient information is not available to the authors of the paper
[15]. But again, through this example, even if we are not able to assess the private information, we still
are able to improve the predictive performance significantly.

Clustering No Clustering

MSE 95.15 (6.38) 150.31 (4.59)

K̂ 2 (3 times) and 3 (47 times) N/A

TABLE III: Results for the CT Image Data. The value in the parenthesis is the standard error of the
averaged MSE over 50 replications, and K̂ denotes the estimated clusters.

B. Application 2: robust learning in Electrical Grid Stability Data against adversaries
This example is to demonstrate the performance of the SEC algorithm when the data is under adversarial

attacks. The Electrical Grid Stability Data [1] consists of 10000 observations and 14 variables. Among the
14 variables, two variables describe the system stability: one is categorical (stable/unstable) and the other
is continuous (where a positive value means a linearly unstable system). We use the continuous variable as
the response. The other 12 variables are the input variables of the Decentral Smart Grid Control system.

We first divide the data into training set (n1 = 8000) and the test set (n2 = 2000). The training set is
randomly divided into 50 learners each with 160 observations. We may assume that the data is stored in
50 servers and some servers get attacked by hackers. Each time a sub-dataset is “attacked”, for simplicity
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Fig. 4: Prediction error (evaluated by MSE) as an increasing function of attack severity.

and illustration, we change the response variable to the opposite number of its original value. We also
assume that the 50-th learner knows for sure that his/her dataset is not attacked.

Under potential attacks, we consider four options of the 50-th learner to perform data analysis, denoted as
Collaboration with all, No collaboration, Collaboration with non-attacked, and Oracle. The “Collaboration
with all” option ignores the fact that some learners/sub-datasets are attacked and insists to collaborate with
all the other leaners. The “No collaboration” option trusts nobody but only himself/herself, and simply
just uses the 50-th sub-dataset as a safe option. The “Collaboration with non-attacked” option is to cluster
the 50 learners into “attacked” and “intact”, and collaborate with those leaners who are classified as intact.
The “Oracle” option is that an oracle knows exactly which learners are attacked and collaborates with
those intact ones. By collaboration, for simplicity, in this example we allow the learners to share datasets.
So once a learner identifies his/her desired collaborators, the leaner just pool the datasets together and fit
a linear regression model.

The trained linear model is then applied to the test set to evaluate its performance (MSE).We plot the
predictive performance against the number of attacked learners in Figure 4. As shown by the results,
our method accurately clusters all the intact learners, and thus the performance curve of “Collaboration
with Non-attacked” overlaps with that of “Oracle”. We also see that the predictive performance of
“Collaboration with Non-attacked” decreases when the level of attack (the number of the attacked learners)
increases. In particular, the decrement becomes very sharp when the number of attacked learners is greater
than 45. One reason may be that the linear model based on the information of one sub-dataset (with sample
size 160 and 12 predictors) or two is enough to capture the underlying relationship. Indeed, the scale of
the of MSE is very small (around 0.0005). So collaborating with more than 5 intact leaners may not
improve the prediction accuracy much in comparison to collaborating with only 2 intact learners.
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