
Complementary lattice arrays for coded
aperture imaging
JIE DING,* MOHAMMAD NOSHAD, AND VAHID TAROKH

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
*Corresponding author: jieding@fas.harvard.edu

Received 7 December 2015; revised 25 February 2016; accepted 1 March 2016; posted 9 March 2016 (Doc. ID 255120); published 15 April 2016

In this work, we propose the concept of complementary lattice arrays in order to enable a broader range of designs
for coded aperture imaging systems. We provide a general framework and methods that generate richer and more
flexible designs compared to the existing techniques. Besides this, we review and interpret the state-of-the-art uni-
formly redundant array designs, broaden the related concepts, and propose new design methods. © 2016 Optical

Society of America

OCIS codes: (110.0110) Imaging systems; (170.1630) Coded aperture imaging; (340.7430) X-ray coded apertures; (110.3010)

Image reconstruction techniques.

http://dx.doi.org/10.1364/JOSAA.33.000863

1. INTRODUCTION

Imaging using high-energy radiation with a spectrum ranging
from x ray to γ ray has found many applications, including
high-energy astronomy [1,2] and medical imaging [3–5]. In
these wavelengths, imaging using lenses is not possible since
the rays cannot be refracted or reflected, and hence cannot
be focused. An alternative technique to do imaging in this spec-
trum is to use pinhole cameras, in which the lenses are replaced
with a tiny pinhole. The problem in these cameras is that the
pinholes pass a low intensity light, while for imaging purposes,
a much stronger light is needed. Increasing the size of the pin-
hole cannot solve this problem as it increases the intensity at the
expense of decreased resolution of the image. Coded aperture
imaging (CAI) is introduced to address this issue by increasing
the number of the pinholes. A coded aperture is a grating or
grid that casts a coded image on a plane of detectors by blocking
and unblocking the light in a known pattern, and produces a
higher signal-to-noise ratio (SNR) of the image while maintain-
ing a high angular resolution [6,7]. The coded image is then
correlated with a decoding array in order to reconstruct the
original image. The deployment of pinholes and the decoding
array are usually jointly designed to make the reconstruction
perfect or near-perfect. Figure 1 gives a schematic diagram
of a CAI system. We emphasize that the theory’s physical as-
sumptions are: (1) each radiating point in the object produces
an image with a constant magnification of the aperture; (2) the
radiation is isotropic with respect to the detector area. Coded
aperture designs for cases where (1) and (2) are violated have
also been studied, for example in [8].

A coded aperture is usually defined based on an integer lat-
tice, and can therefore be modeled as a two-dimensional array.
For generality, we define the encoding array C �c1; c2; � � � ; cn�,
c1; c2; � � � ; cn ∈ Z, as an n-dimensional array with complex-
valued entries and

C �c1; � � � ; cn� � 0;

�c1; � � � ; cn� ∉ �0; L1 − 1� × � � � �0; Ln − 1�:

For simplicity, C �c1; � � � ; cn� is also denoted by C �a�, where
a � �c1; � � � ; cn�T ∈ Rn. The decoding array D can be defined
likewise. The set from which the elements of the aperture arrays
take values from is referred to as an “alphabet.” In coded aper-
ture imaging, a physically realizable coding aperture usually
consists of binary alphabet, where 0 and 1 respectively represent
closed and open pinholes. A complex-valued array C can
be constructed by properly combining multiple coded images
obtained from different aperture masks [9,10]. We show that the
number of {0, 1} masks needed to build anN -phase alphabet set
is �3N − 1�∕2 for odd N and N for even N . The calculations
are based on the following facts: implementing a root of unity in
the form of x � iy, xy ≠ 0�i2 � −1� requires two masks, a pair
in the form of �x � iy; x − iy� or �x � iy; −x � iy�, xy ≠ 0 re-
quires three masks, and 1, −1, i, −i each requires one mask. In
this work, we assume that the elements of an aperture could be
unimodular complex numbers. In the future, the development
in the hardware technology may make the implementation of
the spatial phase modulators possible for γ ray, which can lead
to realizable complex-valued physical masks. In that case, if both
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coding and decoding systems use such masks, an analog
reconstruction could be obtained.

For a planar object that is projected onto a gamma camera
through a coding aperture, the object is perfectly decoded if
C 	 D � mδ�r�, where 	 denotes the convolution, m is an
integer, m ≤ ω with ω � L1L2 � � � Ln being the number of pin-
holes, and δ�r� is the discrete delta function, which corresponds
to an array with 1 centered at the origin and 0 elsewhere [3,7].
The value of m is also called “the SNR gain,” and larger m’s
correspond to a better reconstruction quality.

The designs of the coded apertures are connected to the
concept of “autocorrelation.” The autocorrelation can be
defined in two different ways: periodic and aperiodic, and both
of them can be used in the design of the coded apertures
through different approaches, as will be pointed out later in
this paper. The aperiodic autocorrelation function AC �·� is de-
fined as

AC �v1; � � � ; vn� �
X

c1 ;���;cn∈Z
C �c1; � � � ; cn�C �c1 � v1; � � � ; cn � vn�;

where v1; v2 � � � ; vn ∈ Z and c̄ is the complex conjugate of c.
The periodic autocorrelation will be defined later in the paper.
By choosing D � C−, where C−�c1; � � � ; cn� � C �−c1; � � � ; −cn�,
C 	 D gives the autocorrelation of C .

Nonredundant arrays (NRAs) have been introduced to
arrange the pinholes in CAI, since they have the property that
the aperiodic autocorrelations consist of a central spike with
sidelobes equal to one within certain lag (range of the argument
v1; v2 � � � ; vn) and either zero or unity beyond the lag [11].
Pseudonoise arrays (PNAs) [12] are another alternative, whose
periodic autocorrelations consist of a central spike with −1 side-
lobes, which lead to designs of a pair of arrays such that their
convolution is a multiple of the discrete delta function [13].
Twin primes, quadratic residues, and m-sequences are examples
of PNA designs. NRA- and PNA-based designs are both re-
ferred to as uniformly redundant arrays (URAs) [7,13,14].
However, the sizes of the URA structures are restricted and can-
not be adapted to any particular detector [2,15]. Besides this,
the SNR gain for URAs is limited to ω∕2 [7,16–18]. Other
designs that have also been used in CAI are geometric design
[19] and pseudonoise product design [20], but they are also
available only for a limited number of sizes—the former design
is for square arrays, and the latter one requires that pseudonoise
sequences exist for each dimension.

Though it is generally hard to find a single pair of coding
and decoding arrays, it might be easier to find several pairs that
act perfectly while combined together. Based on this idea, we
look for a broader range of designs for the coding arrays in this
paper. We show that the aperture can be customized to any
shape (boundary) on any lattice, satisfying various demands
in practical situations. Our work is inspired by the Golay
complementary arrays, which are defined as a pair of arrays
whose aperiodic autocorrelations sum to zero in all out-of-
phase positions. They have been used for pinhole arrangement
in order to obtain the maximum achievable SNR gain,
while eliminating the sidelobes of the decoded image [3].
We note that there is a natural mapping between a pair of
Golay complementary arrays, say C1 and C2, and a CAI system
consisting of two parallel coding/decoding apertures, as illus-
trated in Fig. 2, where D1 � C−

1, D2 � C−
2. When an object

goes through the system, the sidelobes are completely canceled
out by adding the two decoded images.

Though an aperture is usually defined based on an integer
lattice, we consider the design problem in the context of a
general lattice, naturally arising from practical implementa-
tions. For example, usually the distance between two pinholes
should be no less than a given threshold due to the physical
constraints. It has been shown by Fejes [21] that the lattice
arrangement of circles with the highest density in the two-
dimensional Euclidean space is the hexagonal packing arrange-
ment, in which the centers of the circles are arranged in a hex-
agonal lattice. Thus, given the minimal distance allowed among
pinholes, the most compact arrangement (which corresponds
to the largest possible SNR gain) is hexagonal lattice.

The outline of this paper is given below. In Section 2 we
briefly present related work on Golay complementary array
pairs which are based on aperiodic autocorrelation, and then
propose complementary lattice arrays and other related new
concepts, such as the complementary array banks. This general
framework leads to the new concept called multichannel CAI
systems, which extends the classical CAI systems. We provide
the concept, theory, and the design methodology. Due to the
reasons mentioned before, our examples are mainly based on
two-dimensional hexagonal arrays and unimodular alphabets,
which consist of unimodular complex numbers. Nevertheless,
the methodology given in this work could be further general-
ized to higher dimensions. In Section 3 we review the URA
literature that is mostly based on periodic autocorrelation. We
further generalize the related concepts in Section 4 in a similar
fashion. This leads to a new class of aperture designs that exist
for sizes for which URAs do not, while having the desirable im-
aging characteristics of URAs. In Section 5, we provide computer
simulations demonstrating the performance of our schemes.

Fig. 1. Illustration of the CAI system.

Fig. 2. CAI system with two parallel channels: a planar object is the
input to the coding apertures C1, C2, and a decoded image is the out-
put from the decoding apertures C−

1, C
−
2.
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2. CONCEPT, THEORY, AND DESIGN OF
COMPLEMENTARY LATTICE ARRAYS

A. Golay Complementary Arrays

In this section we briefly introduce related works on Golay
complementary array pairs. Golay [22] first introduced
Golay complementary sequence pairs in 1951 to address the
optical problem of multislit spectrometry. These sequences
were later used for many other applications, including horizon-
tal modulation systems in communication [23], orthogonal
frequency division multiplexing [24], Ising spin systems [25],
and channel measurement [26,27]. Barker arrays, which are
closely related to complementary array pairs [28], are a f
1g
binary array C such that for all v1; � � � ; vn ∈ Z; �v1; � � � ; vn� ≠
�0; � � � ; 0�,

jAC �v1; � � � ; vn�j ≤ 1: (1)

Another related concept is the NRA, which also satisfies the
condition (1). Its only difference with the Barker array is that
it is {0, 1}-binary.

Golay complementary array pairs address the scarcity of
Barker arrays and NRAs. The basic idea of Golay complemen-
tary array pairs is to use the nonzero part of one autocorrelation
to “compensate” the nonzero counterpart of the other [22].
Specifically, a pair of arrays C1 and C2 of size L1 × � � � × Ln is
a Golay complementary array pair, if the sum of their aperiodic
autocorrelations is a multiple of the discrete delta function, i.e.,

AC1�v1; � � � ; vn� � AC2�v1; � � � ; vn� � 0;

for all v1; � � � ; vn ∈ Z; �v1; � � � ; vn� ≠ �0; � � � ; 0�. The initial
study of Golay complementary sequence pairs (n � 1) was
for the binary case. Binary Golay complementary sequence
pairs are known for lengths 2, 10 [23], and 26 [29]. It has been
shown that infinitely many lengths could be synthesized using
the existing solutions [30]. Specifically, binary Golay comple-
mentary sequence pairs with length 2k110k226k3 exist, where
k1; k2; k3 are any nonnegative integers. Besides, no sequences
of other lengths have been found. Later on, larger alphabets
were considered, including 2n-phase [31], N -phase for even
N [32], the ternary case A � f−1; 0; 1g [33–35], and the
unimodular case [36]. Here, an alphabet A is called N -phase
if it consists of N th roots of unity, i.e., A � fζ∶ζN � 1g; it is
unimodular if A � fζ∶jζj � 1g.

In 1978, Ohyama et al. [3] constructed binary Golay com-
plementary array pairs (n � 2) of size 2k1 × 2k2 . The size is
then generalized to 2k110k226k3 × 2k410k526k6 , where kj’s,
j � 1; � � � ; 6 are any nonnegative integers [37,38].

We look for broader concepts and designs than complemen-
tary array pairs. The examples provided in this paper are for
the two-dimensional case, but they can be easily generalized
to higher dimensions. We start with the definitions in the fol-
lowing subsection.

B. Definitions and Notations

Definition 1 A lattice in Rn is a subgroup of Rn, which is gen-
erated from a basis by forming all linear combinations with integer
coefficients. In other words, a lattice L in Rn has the form

L �
�Xn

i�1

cieijci ∈ Z
�
;

where feigni�1 forms a basis of Rn.
For example, the integer lattice Z2 is generated from the

basis e1 � �1; 0�, e2 � �0; 1�. The hexagonal (honeycomb)
lattice A2 is generated from the basis e1 � �1; 0�,
e2 � �− 1

2 ;
ffiffi
3

p
2 �. A classical array is based on an integer lattice.

We now give the definition of an array that is based on a general
lattice.

Definition 2 Let L be a lattice. A lattice array CL;Ω;A de-
fined over alphabet A and with support Ω is a mapping
C �·�∶L → A, such that C �a� � 0 for all a ∉ Ω and C �a� ∈ A
for all a ∈ Ω, where C �a� is the entry at location a. The number
of the elements of Ω (array size) is denoted by jΩj. We denote
CL;Ω;A by C when there is no ambiguity.

The following terms are made to simplify the notations.

• Define CL;Ω�t ;Aftg as the shifted copy of CL;Ω;A by t
(for t ∈ L), if

CL;Ω�t ;Aftg�a� � CL;Ω;A�a − t �; ∀ a ∈ L:

For brevity, CL;Ω�t ;Aftg is simplified as Cftg.
• Assume that the two arrays CL;Ω1;A1

1 and CL;Ω2 ;A2
2 are

based on the same lattice L, but not necessarily on the same
area. The addition of C1 and C2, C � C1 � C2, is an array
whose entries are the addition of corresponding entries in C1

and C2, i.e.,

Ω � Ω1 ∪ Ω2; C �a� � C1�a� � C2�a�; ∀ a ∈ Ω:
• A set of arrays fCL;Ωm;Am

m gMm�1 are nonoverlapping if

Ωm1
∩ Ωm2

� Ø; ∀ m1;m2 ∈ 1; 2; � � � ;M;m1 ≠ m2:

Definition 3 Assume that the lattice L is generated from feigni�1.
The aperiodic autocorrelation function is

AC �v1; � � � ; vn� �
X
a∈Ω

C �a�C �a� v1e1 � � � � � vnen�;

for v1; v2; � � � ; vn ∈ Z. The aperiodic cross-correlation function
AC1C2�·� of two arrays C1 and C2 is

AC1C2�v1; � � � ; vn� �
X
a∈Ω

C1�a�C2�a� v1e1 � � � � � vnen�:

Sometimes, AC �·� and AC1C2�·� are respectively denoted by C 	
C− and C1 	 C−

2.

Definition 4 A complementary array bank consists of pairs
f�CL;Ω1m;A

m ; DL;Ω2m;A
m �gMm�1 such that the sum of the cross-

correlations is a multiple of the discrete delta function,

XM
m�1

Cm 	 D−
m �

XM
m�1

ACmDm�·� � ωδ�r�;

where ω is a constant. M is called the order, or number of
channels.

Remark 1 There is a natural mapping between a complemen-
tary array bank, say f�Cm;Dm�gMm�1, and a CAI system consisting
of M parallel channels, each of which consists of a pair of coding
and decoding apertures (Fig. 3). When a source image comes, it is
coded and decoded through M channels simultaneously, and is
then retrieved by simply adding the decoded images from all the
channels. The multichannel CAI system proposed here provides a
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generalized solution to CAI design, by including a classical CAI
system as a special case. In the remaining part of Section 2, we
mainly study the complementary array sets, which provides insight
into the theory and design of complementary array banks in
general.

Definition 5 A set of arrays fCL;Ωm;A
m gMm�1 is a complemen-

tary array set if the sum of their aperiodic autocorrelations is a
multiple of the discrete delta function, i.e.,

XM
m�1

ACm�v1; v2; � � � ; vn� � 0; (2)

for all v1; v2; � � � ; vn ∈ Z, �v1; � � � ; vn� ≠ �0; � � � ; 0�. A Golay
complementary array pair is the special case when M � 2.

Remark 2 In practice, the pinholes on an aperture only change
the phase of a source point. Therefore, we assume a unimodular
alphabet by default. It is clear that if a set of nonoverlapping arrays
are based on unimodular∕N -phase alphabets, the addition of
them is also based on an unimodular∕N -phase alphabet.

The autocorrelation of any array is the same as that of its shifted
copy. This is because for any v1; � � � ; vn ∈ Z; t ∈ L, we have

ACftg�v1; � � � ; vn� �
X

a∈Ω�t

Cftg�a�Cftg�a� v1e1 � � � � � vnen�

�
X

a∈Ω�t

C �a − t �C �a − t � v1e1 � � � � � vnen�

�
X
a∈Ω

C �a�C �a� v1e1 � � � � � vnen�

� AC �v1; � � � ; vn�:

Furthermore, if fCmgMm�1 is a complementary array set, then
fCmftmggMm�1; ∀ tm ∈ L also forms a complementary array set.
In other words, a complementary array set is “invariant” under
shift operation.

Based on a unimodular alphabet, a complementary array set
fCmgMm�1 satisfies

PM
m�1 A

Cm�0; � � � ; 0� � M jΩj. Thus, the sum
of the autocorrelations can be written as a multiple of the discrete
delta function:

PM
m�1 Cm 	 C−

m � PM
m�1 A

Cm�·� � M jΩjδ�r�.
C. Motivating Design

In Ohyama et al.’s design, L is an integer lattice, and the num-
ber of complementary arrays is M � 2. The design consists of
two steps:

• First, choose the following complementary sequence pair:

C1 � � 1 1 �; C2 � � 1 −1 �: (3)
• Second, design complementary array pairs of larger sizes

in an inductive manner. Assume that we already have a com-
plementary pair C1, C2, with C1 	 C−

1 � C2 	 C−
2 � 2ωδ�r�,

where ω is constant. Let

Ĉ1 � C1ft1g � C2ft2g; Ĉ2 � C1ft1g − C2ft2g; (4)

where the shifts t1 and t2 are arbitrarily chosen.

The validity of the construction Eq. (4) is clear from the fact
that

Ĉ1 	 Ĉ−
1 � C1ft1g 	 C1ft1g− � C2ft2g 	 C2ft2g−

� C1ft1g 	 C2ft2g− � C2ft2g 	 C1ft1g−;
Ĉ2 	 Ĉ−

2 � C1ft1g 	 C1ft1g− � C2ft2g 	 C2ft2g−
− C1ft1g 	 C2ft2g− − C2ft2g 	 C1ft1g−;

and thus,

Ĉ1	 Ĉ−
1� Ĉ2	 Ĉ−

2�2�C1ft1g	C1ft1g−�C2ft2g	C2ft2g−�
�2�C1	C−

1�C2	C−
2��4ωδ�r�: (5)

In practice, t1 and t2 are chosen properly so that C1ft1g and
C2ft2g do not overlap, which guarantees that Ĉ1 and Ĉ2 are
still based on unimodular alphabets. For example, after apply-
ing Eqs. (4) to Eq. (3) once, we have two possible complemen-
tary array pairs:

Ĉ1 � � 1 1 1 −1 �; Ĉ2 � � 1 1 −1 1 �; (6)

or

Ĉ1 �
�
1 1
1 −1

�
; Ĉ2 �

�
1 1
−1 1

�
: (7)

The process of design is also illustrated in Fig. 4. By repeated
applications of the above design process, complementary pairs
of size 2k1 × 2k2 (for any nonnegative integers k1, k2) can be
designed.

Inspired by the above design for complementary array pairs
on integer lattices, we look for a “seed” [similar to Eq. (3)] and
a related scheme to “grow” the seed [similar to Eq. (4)] for
the design of complementary hexagonal arrays. Admittedly,
we build a simple mapping between two-dimensional arrays
on an integer lattice and a hexagonal lattice (or other lattices)
below:

CLs ;Ωs ;A�c1 	 es1 � c2 	 es2� � CLh;Ωh;A�c1 	 eh1 � c2 	 eh2�;
(8)

Fig. 3. CAI system with M parallel channels: a planar object is the
input to the coding apertures C1; � � � ; CM , and a decoded image is the
output from the decoding apertures D−

1; � � � ; D−
M .

Fig. 4. Illustration of the design of complementary array pairs on
integer lattices.
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for all c1; c2 ∈ Z, where the superscripts s and h respectively
denote integer and hexagonal lattices. Under the above map-
ping, a set of complementary arrays on an integer lattice are
still complementary on a hexagonal lattice. This is due to
the fact that the autocorrelation of an array is only with respect
to the coefficients c1, c2. Nevertheless, the lattice array naturally
arises from practical designs. Consider the scenario where a
two- (or three)-dimensional coded aperture is to be built that
has pinholes arranged on a certain (suitably chosen) type of
lattice, which adapts to a particular physical aperture mask.
The designs are preferably based on that particular lattice
instead of its mapping on an integer lattice, which has zero
elements padded here and there and which needs to be mapped
back to the original lattice.

D. Design for the Basic Hexagonal Array of Seven
Points

We first study a very simple hexagonal pattern that acts as a
“seed.” It is a hexagonal array of seven points, which is shown
in Fig. 5. After that, we consider possible ways to “grow” the
seed.

We start from considering the existence of hexagonal com-
plementary array pairs, i.e., the order M is 2.

Theorem 1 For the basic seven-point hexagonal array, there
exists no complementary array pair with a unimodular alpha-
bet (Fig. 6).

The proof is given in Appendix A. One may be further in-
terested in the existence of a hexagonal complementary array
pair if the basic array does not have the origin 0 (Fig. 7). In
fact, it does not exist, either.

Theorem 2 For the array in Fig. 7, there exists no hexagonal
complementary array pair with a unimodular alphabet.

The proof is given in Appendix B. The nonexistence of
complementary array pairs for the array in Fig. 5 motivates
us to further consider higher-order M. We use the notation

of “design parameter” for brevity. For a particular array pattern,
if there is a complementary array set with M arrays and
an N -phase alphabet, the pair �M;N � is called its design
parameters. Furthermore, if the size of each array is equal
to L, we refer to the triplet �M;N ; L� as its design parameters
whenever there is no ambiguity.

Fortunately, complementary array triplets with an unimod-
ular alphabet exist. In fact, we have found more than one design
with �M;N ; L� � �3; 3; 7�. The following is an example.

Design 1 Let ζ � exp�i2π∕3�. Let
C1 � fxkg6k�0; C2 � fykg6k�0; C3 � fzkg6k�0

denote the entries of three hexagonal arrays shown in Fig. 5.
Then

fxkg6k�0 � fζ2; ζ0; ζ2; ζ2; ζ0; ζ2; ζ0g;
fykg6k�0 � fζ1; ζ0; ζ2; ζ2; ζ1; ζ0; ζ1g;
fzkg6k�0 � fζ1; ζ0; ζ1; ζ1; ζ2; ζ0; ζ1g

form a complementary array set (Fig. 8).
We have also found more than one design with

�M;N ; L� � �4; 2; 7�. The following is an example.
Design 2 Let

C1 � fxkg6k�0; C2 � fykg6k�0;

C3 � fzkg6k�0; C4 � fwkg6k�0

denote the entries of four hexagonal arrays shown in Fig. 5. Then

fxkg6k�0 � f1; 1; −1; 1; 1; −1; 1g;
fykg6k�0 � f−1; 1; 1; −1; −1; 1; 1g;
fzkg6k�0 � f1; 1; −1; 1; −1; 1; 1g;
fwkg6k�0 � f1; 1; 1; −1; 1; −1; 1g

form a complementary array set (Fig. 9).

Fig. 5. Basic hexagonal array with seven points.

Fig. 6. There exists no seven-point hexagonal complementary pair
with unimodular alphabet.

Fig. 7. Basic hexagonal array with six points.

Fig. 8. Complementary triplet with three-phase alphabet, i.e.,
�M;N ; L� � �3; 3; 7�, where ζk is represented by k, for k � 0; 1; 2.
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E. Methodology for Designing Larger Arrays

We now consider how to “grow” the seed that we have found in
order to design more and larger arrays. If � and 	 are respec-
tively considered as addition and multiplication operations,
then Eqs. (4) and (5) can be written in symbolic expression,

Ĉ � HCftg; (9)

ĈT Ĉ − � CftgTH THCftg− � 2CftgTCftg−; (10)

where

Ĉ �
�
Ĉ1

Ĉ2

�
; Ĉ − �

�
Ĉ−

1

Ĉ−
2

�
;

H �
�
1 1

1 −1

�
; Cftg �

�
C1ft1g
C2ft2g

�
;

and H T is the conjugate transpose of H . The key that Ĉ re-
mains to be a complementary pair is that H satisfies
H TH � 2I , i.e., H is a Hadamard matrix. This observation
could be generalized to the following result.

Theorem 3 Let U � �umk �M×M be a unitary matrix up
to a constant, i.e., U TU � cI , where c > 0. Assume that
fCL;Ωk ;A

k gMk�1 is a complementary array set. Then, fĈmgMm�1 is
also a complementary array set, where

Ĉm �
XM
k�1

umk · C
L;Ωk�tk ;A
k ftkg; m � 1; 2; � � � ;M;

t1; t2; � � � tM are arbitrarily chosen, and u · C is an array that
multiplies each entry of C by the scalar u.

Proof 1 Define a vector space on A (it is not necessarily a
field) with the addition operation � defined in Definition 2,
and the variables

Ĉ �

2
64 Ĉ1

..

.

ĈM

3
75 and Cftg �

2
64

C1ft1g
..
.

CM ftM g

3
75:

Define a quadratic form with the multiplication operation * de-
fined as the convolution. The sum of aperiodic autocorrelations of
fĈmgMm�1 is

XM
m�1

Ĉm 	 Ĉ−
m � ĈT Ĉ − � CftgTU TUCftg− � cCftgTCftg−

� c
XM
m�1

CmftM g 	CmftM g−

� c
XM
m�1

Cm 	C−
m � cMωδ�r�: (11)

Remark 3 We are interested in the following special case where

1. A is an N -phase alphabet;
2. U is the Fourier matrix: FM � �f mk �M×M; f mk �

expfi2π�m − 1��k − 1�∕Mg;
3. The shifted arrays CL;Ωk�tk ;A

k ftkg; k � 1; � � � ;M do not
overlap. The complementary array set fCkgMk�1 with design
parameters �M;N ; jΩj� (if jΩkj � jΩj; k � 1; � � � ; M ) becomes
fĈmgMm�1 with design parameters �M; lcm�N;M�; M jΩj� ac-
cording to Theorem 3, where lcm stands for least common multi-
ple. Besides this, we have c � M , ω � jΩj in Eq. (11).

Theorem 3 provides a powerful tool to design more complex
complementary arrays, which will be illustrated in
Subsection 2.F. For future reference, we also include the
following fact.

Remark 4 Assume that C �1�; � � � ;C �K � are K complementary
array sets on the same lattice, and the set C �k� has design param-
eters �Mk;N k�, ∀ k � 1; � � � ; K . Then, it is clear that
C � C �1� ∪ � � � ∪ C �K � can be thought as a new complementary
set with design parameters �PK

k�1 Mk; lcm�N 1; � � � ; N K ��.
F. Example: Design for the Hexagonal Array
of 18 Points

The basic hexagonal array of seven points studied in
Subsection 2.D contains two layers, with one and six points,
respectively. We now study the hexagonal array that contains
one more layer (shown in Fig. 10). The design for this hexago-
nal array is not very obvious, so we delete the center element,
i.e., layer 1. (In fact, designs always exist for an arbitrarily
shaped array, as will be discussed later. We delete the center
point primarily for a cute solution.) The remaining 18 points
are grouped into six basic triangular arrays: C1, C2, C3, C 0

1,
C 0

2, C
0
3, which is shown in Fig. 11.

This motivates the design of complementary array triplets
for the basic triangular array shown in Fig. 12, where ζk is rep-
resented by k, for k � 0; 1; 2, ζ � exp�i2π∕3�. In Fig. 12,

Fig. 9. Complementary quadruplet with two-phase (binary) alpha-
bet, i.e., �M;N ; L� � �4; 2; 7�, where 
1 is represented by 
.

Fig. 10. Hexagonal array with three layers (19 points).
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fC1; C2; C3g form a complementary array set. Due to sym-
metry, its rotated copy, C 0

1; C
0
2; C

0
3, also forms a complemen-

tary array set. Applying Theorem 3, we obtain the following
design.

Design 3 Let

Ĉ �

2
6666666664

Ĉ1

Ĉ2

Ĉ3

Ĉ4

Ĉ5

Ĉ6

3
7777777775
� F 6

2
6666666664

C 0
1ft1g

C1ft2g
C 0

2ft3g
C2ft4g
C 0

3ft5g
C3ft6g

3
7777777775
;

where t1; � � � ; t6 are such that Ĉ1; � � � ; Ĉ6 are arranged to form
a hexagonal array of 18 points, as is shown in Fig. 11.
Then fĈmg6m�1 forms a complementary array set. The design is
also shown in Fig. 13, where ζk is represented by k, for
k � 0; � � � ; 5, ζ � exp�i2π∕6�.
G. Complementary Array Bank

Up to this point, we have assumed that the coding array C and
decoding array D are related via D�r� � C �−r�. The design of
CAI thus reduces to the design of complementary array sets.
Then we extend the autocorrelation to cross-correlation, and
the design of complementary array sets is accordingly extended
to that of complementary array banks. The following result is a
generalization of Theorem 3, and its proof is similar to that of
Theorem 3.

Theorem 4 LetΘ � �θmk �,Φ � �ϕmk � ∈ CM̃×M be two ma-
trices satisfying ΘTΦ � cI for some positive constant c. For a
given lattice L, suppose that f�Ck; Dk�gMk�1 is a complementary
array bank. Then, f�Ĉm; D̂m�gM̃m�1 is also a complementary array
bank, where

Ĉm �
XM
k�1

θmk · Ckftkg; D̂m �
XM
k�1

ϕmk · Dkftkg;

m � 1; � � � ; M̃ ;

Fig. 11. Hexagonal array with layer 2 and 3 (18 points).

Fig. 12. Basic triangular complementary array triplets with three-
phase alphabet, i.e., �M;N ; L� � �3; 3; 3�.

Fig. 13. Complementary array set with parameter �M;N ; L� � �6; 6; 18�.
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t1; t2; � � � tM are arbitrarily chosen, and u · C is an array that
multiplies each entry of C by the scalar u.

Remark 5 The following case is of interest.

1. fCk; DkgMk�1 have N -phase alphabets;
2. Θ is equal to Φ and it contains M orthogonal columns of

the complex Fourier matrix FM̃ (thus M ≤ M̃ );
3. The shifted arrays Ckftkg do not overlap, neither

do Dkftkg; k � 1; � � � ; M .

Furthermore, if we assume that Ck � Dk, k � 1; � � � ;M and
the array sizes are equal to L, then the complementary array set
fCkgMk�1 has design parameters �M;N ; L�, and fĈmgMm�1 has de-
sign parameters �M̃ ; lcm�N; M̃�;ML�.

Lemma 1 Any single point, as the simplest array on any lattice,
forms a complementary set.

Remark 6 Lemma 1 is a trivial but useful result. It follows
from Definition 5 and the fact that the aperiodic autocorrelation
of a single point is always the discrete delta function. By employing
Lemma 1, Theorem 3, and Theorem 4, it is possible to design com-
plementary arrays of various support Ω.

Corollary 1 For an arbitrary set Ω on a lattice, there exists at
least one complementary array set with support Ω for any orderM
such that M ≥ jΩj.

Remark 7 [Augmentation using Theorem 4] Due to Theorem
4, we let M̃ > M for practical purposes. For example, we choose
M̃ � 2m (for a positive integer m) such that U is a 
1
Hadamard matrix and the growth of alphabet (N ) could be well
controlled. We call this “augmentation” procedure. Augmentation
is important, because it is often desirable to reduce the size of the
alphabet, and thus the cost of practical implementations. The fol-
lowing design is an example of augmentation.

Design 4 We use several basic arrays to compose a smile face
shown in Fig. 14. The colors indicate different basic complemen-
tary array sets: the two green arrays (at the lower and upper boun-
daries) form a basic array set with parameters �M;N ; L� �
�2; 2; 8�. So do the brown ones (at the lower-left and upper-right
boundaries) and cyan ones (at the lower-right and upper-left boun-
daries). The two blue arrays (at the lower and upper boundaries)
form a basic array set with �M;N ; L� � �2; 2; 4�. The two yellow
arrays (single points at the lower and upper boundaries) form a
basic array set with �M;N ; L� � �2; 1; 1�. The three black arrays
(the eyes and nose) form a basic array set with �M;N ; L� �
�3; 3; 3� (Fig. 12); so do the three red ones (part of the mouth).

The four purple arrays (the rest part of the mouth) form a basic
array set with parameters �M;N ; L� � �4; 2; 3�, which could be
obtained by applying Theorem 4 with Remark 5 and M̃ � 4 to a
set of three single-point arrays. By applying Remark 4 and Theorem
3 to the 20 arrays, a smile design with �M;N ; L� � �20; 60; 88�
could be obtained. Due to Remark 7, another smile design with
�M;N ; L� � �32; 6; 88� could be obtained.

H. Design for Infinitely Large Hexagonal Arrays

By choosing a proper seed and growth scheme, we are able to
design infinitely large hexagonal arrays. The following is an
example. We first design a complementary array set with
M � 7, as a seed.

Design 5 The union of Design 1 with design parameters
�M;N ; L� � �4; 2; 7� and Design 2 with �M;N ; L� �
�3; 3; 7� is a design with �M;N ; L� � �4� 3; lcm�2; 3�; 7� �
�7; 6; 7� (Fig. 5), based on Remark 4.

Design 6 By repeated applications of Theorem 3 with U �
F 7 to Design 5, we obtain a design with parameters �M;N ; L� �
�7; 42; 7l� for any positive integer l. The design is illustrated in
Fig. 15, where the colors indicate the process of “growth.” In fact,
applying Theorem 3 to Design 5 once (with Remark 3 conditions),
we obtain a larger array set with �M;N ;L���7;lcm�6;7�;7×7��
�7;42;72�. Figure 15(a) illustrates how the seven arrays of
size 7 (indicated by different colors) are combined to form larger
arrays. Similarly, applying Theorem 3 to the �M;N ; L� �
�7; 42; 72� design once, we obtain a larger array set with
�M;N ;L� � �7; lcm�42;7�;7 × 72� � �7;42;73�. Figure 15(b)
illustrates how the seven arrays of size 72 (indicated by different
colors) are combined to form larger arrays. Further applications
of Theorem 3 will not increase M , N , but will increase L.

As an alternative, the following design is also for a 7l-point
hexagonal array, but with different elements.

Design 7 We keep applying Theorem 3 with U � F 7 to a
single-point array, e.g., with entry 1, we obtain a design with
parameters �M;N ; L� � �7; 7; 7l� for any positive integer l.
To see how it works, first consider a complementary array set with
�M;N ; L� � �1; 1; 1� (a single-point array). Taking the union of
seven such array sets as in Remark 4 leads to an array set with
�M;N ; L� � �7; 1; 1�. Then, applying Theorem 3 once leads
to an array set with �M;N ; L� � �7; lcm�7; 1�; 7 × 1� �
�7; 7; 7�. Further applications of Theorem 3 will increase L,
but not M , N . The design could also be illustrated by Fig. 15.

3. URA, HURA, AND MURA BASED ON
PERIODIC AUTOCORRELATION

In this section, we review related works on URAs, including
hexagonal uniformly redundant arrays (HURAs) and modified
uniformly redundant arrays (MURAs).

A. URA

We first introduce the concept of periodic autocorrelation
and “pseudonoise” that are important to the design of URAs.

Definition 6 Let C � fC �i1; � � � ; in�g be an infinite array
on an integer lattice, which satisfies

C �i1; � � � ; in� � C �I 1; � � � ; I n�;
Fig. 14. Smile design, with �M;N ; L� � �20; 60; 88� (without
augmentation) or (32, 6, 88) (with augmentation).
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for all ij ∈ Z and ij ≡ I j mod Lj, j � 1; 2; � � � ; n, where
L1; � � � ; Ln; I 1; � � � ; I n ∈ N and �I1; � � � ;I n�∈ �0;L1−1�× � � �×
�0;Ln−1�. The finite array within �0; L1 − 1� × � � � × �0; Ln − 1�,
denoted by c, is called the basic array. C is called the periodic ex-
tension of s. The periodic autocorrelation function of C (or c) is

AC �v1;���;vn��
X

i1∈ �0;L1−1�;
���;

in∈ �0;Ln−1�

C �i1;���;in�C �i1�v1;���;in�vn�;

v1; � � � ; vn ∈ Z. The periodic cross-correlation between two arrays
are similarly defined.

A section of an infinite array C would be a valid URA aper-
ture, if there exists a finite array D such that C 	 D− is a peri-
odic extension of the discrete delta function. For a detailed
discussion about the benefits and implementations of periodic
extension, please refer to [7].

Definition 7 An array of size L1 × � � � × Ln is a pseudonoise
(PN) array if

(1) it is f
1g-binary;
(2) all out-of-phase correlations are −1, i.e., AC �v1; � � � ;

vn� � −1, where v1; � � � ; vn ∈ Z and vj ≢ 0mod Lj for at
least one j ∈ f1; 2; � � � ; ng.

In 1967, Calabro and Wolf [12] showed that a class of
two-dimensional PN arrays could be synthesized from quad-
ratic residues. The arrays are of size p1 × p2, where p1, p2
are any prime numbers satisfying p2 − p1 � 2:

D�i1; i2� �
8<
:

−1 i2 ≡ 0mod p2
1 i1 ≡ 0mod p1; i2 ≢ 0mod p2
�i1∕p1��i2∕p2� otherwise

;

where �i∕p�; i ∈ Z is Legendre operator:

�i∕p� �
8<
:

0 i ≡ 0mod p
1 ∃x ≢ 0mod p; s:t: i ≡ x2 mod p
−1 otherwise:

In 1978, following from the above result, Fenimore and
Cannon [7] designed C and D such that C 	 D− is a periodic
extension of the discrete delta function. The design is given
below, where �p1; p2� is a twin prime pair. The coding array
is C :

C �i1; i2� �

8>><
>>:

1 �i1∕p1��i2∕p2� � 1
0 i2 ≡ 0mod p2
1 i1 ≡ 0mod p1; i2 ≢ 0mod p2
0 otherwise:

(12)

The decoding array of C is D−, where D is

D�i1; i2� �
�
1 ifC �i1; i2� � 1
−1 ifC �i1; i2� � 0:

It is shown that

C 	 D− � p1p2 − 1
2

δ�r� �within one period�: (13)

URAs can also be designed from maximal-length shift-
register sequences or m-sequences [39]. The m-sequence is an-
other class of PN sequences, which have lengths n � 2k − 1
with k being any positive integer. They are sometimes referred
to as “PN sequences” [40]. In 1976, MacWilliams and Sloane
[40] showed how to obtain PN arrays from m-sequences. Let S
be an m-sequence of length n � 2k − 1. If n � n1n2 such that
n1 and n2 are relatively prime, a PN array, denoted by H, is
designed below:

Fig. 15. Complementary array set with parameter �M;N � � �7; 42; 7l� (Design 6), or �M;N � � �7; 7; 7l� (Design 7) for any positive integer
l. (a) Illustration of one of the seven arrays of size 72 obtained as a result of applying Theorem 3 to a complementary array set of seven arrays of size 7
(indicated by different colors) once. (b) Illustration of one of the seven arrays of size 73 obtained as a result of applying Theorem 3 to a com-
plementary array set of seven arrays of size 72 (indicated by different colors) once.
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H �i1; i2� � S�i�; (14)

where i ≡ i1 mod n1, 0 ≤ i1 < n1, and i ≡ i2 mod n2, 0 ≤ i2 <
n2. We note that when sum �H � � −1 [40, Property IP-IV*],
we can design a URA with coding array C � �−H � J�∕2 and
decoding array D � −H − on integer lattices, where J is a unit
array, i.e., with all elements equal to one.

B. HURA

In 1985, Finger and Prince [16] designed a class of linear
URAs, i.e., sequences C and D such that C 	 D is a periodic
extension of the discrete delta function. The design is based on
PN sequences, which in turn come from quadratic residues.
Then, by mapping linear sequences onto hexagonal lattice,
they proposed the HURAs. In the first step, they constructed
the following sequence of length p, where p ≡ 3mod 4 is a
prime:

D�i� �
�
1 if i � 0
−�i∕p� otherwise:

Let C � �D� J�∕2. Then the following identity holds:

C 	 D− � p� 1

2
δ�r� �within one period�: (15)

In the second step, they map the sequence D onto a hexagonal
lattice:

H �i1e1 � i2e2� � D�i1 � τi2�; (16)

where τ is an integer to be chosen. H is called the Skew–
Hadamard URA. It is easy to see that the correlation between
H and �H � J�∕2 is a multiple of the discrete delta function,
just like the one-dimensional case.

As to the choice of lattice and τ, it is well stated by [16] that
“The freedom available in this procedure rests in the choice of
the lattice, the choice of the order p, and the choice of the
multiplier τ. The lattice type will determine what symmetries
can occur � � � The multiplier τ determines the periods of the
URA and hence the shape of the basic pattern.” Furthermore,
HURAs are those with hexagonal basic patterns, when the lat-
tice is chosen to be hexagonal. The qualified p is either 3 or
primes of the form 12k � 1 [16].

Besides the fact that HURAs are based on hexagonal lattices,
they are antisymmetric upon 60 deg rotation. This property
provides for effective reduction of background noise [1,2].
Due to similar reasoning, the designs proposed in Section 2
also obtain robustness against background noise.

C. MURA

It has been shown that PN sequences, together with the URAs
and HURAs that are based on them, could be made with prime
lengths of the form 4k � 3. Gottesman and Fenimore [17]
proposed the MURAs, which further increased the available
patterns for CAI. MURAs exist in lengths p � 4k � 1, where
p is a prime.

The design of MURAs also starts with a sequence D, which
is then mapped onto a hexagonal lattice, following the same
procedure as HURAs. Recalling URA and HURA designs
from Subsections 3.A and 3.B, we design using the following
procedure.

Step 1. Let D be a PN sequence (array);
Step 2. Let the coding array C be �D� J�∕2, and the

decoding array be D−;
Step 3. (optional) We map sequences onto a two-

dimensional lattice [see Eqs. (14) and (16)].
However, the design of MURAs is less straightforward, be-

causeD is not a PN sequence and C ≠ �D� J�∕2. One way to
design MURA sequences is

C �i� �

8>><
>>:

0 i ≡ 0mod p

1 ∃x ≢ 0mod p; s:t: i ≡ x2 mod p

0 otherwise

;

D�i� �

8>><
>>:

1 i ≡ 0mod p

1 C �i� � 1; i ≢ 0mod p

−1 otherwise:

It is easy to verify that for any v ≢ 0mod p, we have

Xp−1
i�0

C�i�D�i � v� � 0: (17)

Gottesman and Fenimore [17] also gave a class of MURAs
for integer lattices. The coding array is the same as Eq. (12),
except for a change of the size: p1 � p2 � p. The decoding
array is D−, where

D�i1; i2� �
8<
:

1 i1 � i2 ≡ 0mod p
1 C �i1; i2� � 1; i1 � i2 ≡ 0mod p
−1 otherwise:

4. NEW URA CONSTRUCTIONS

A. URA from Periodic Complementary Sequence Set

In this section, we first briefly summarize some similarities and
differences between the aperiodic-based and periodic-based de-
signs of CAI, and then propose a new design framework that is
based on periodic autocorrelation.

In the aperiodic case, the elements of arrays are assumed to
extend only over some finite area and be zero outside that area.
This fact provides great convenience for the design of comple-
mentary array sets/banks, since several arrays could be easily
concatenated while maintaining the unimodular alphabet dur-
ing the “growth” process. In addition, the concept of “bank”
and a growth scheme make the aperiodic-based designs more
flexible. For example, we have shown how to make CAI aper-
ture with arbitrary patterns. In the periodic case, the arrays were
assumed to be periodic and infinite in extent. The resulting
correlations are calculated over a full period. The usual way
to design is to first design sequences with good autocorrelation
property, e.g., pseudonoise, and then map them onto arrays. As
to practical implementations, periodic-based designs often re-
quire the physical coding aperture to be periodic extensions of
some basic patterns to mimic the periodicity, while aperiodic-
based ones do not.

Despite their differences in principles and implementations,
the idea of “complementary” can also be associated with peri-
odic correlations, leading to the following concept that is sim-
ilar to complementary array sets in Section 2.
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Definition 8 A set of arrays with the same basic pattern is a
periodic complementary array set (PCAS), if the sum of their
periodic autocorrelations is a periodic extension of the discrete delta
function. A one-dimensional PCAS is also referred to as a
periodic complementary sequence set (PCSS). The notation “design
parameters” �M;N � or �M;N ; L� is similarly defined as in
Subsection 2.D.

As discussed before, URAs (including HURAs) require the
lengths of sequences to be prime numbers or 2k − 1, so the pos-
sible sizes of URA arrays are quite limited. However, the above
concept produces more admissible lengths, offering more
choices in selecting an aperture. For example, we can construct
the following URA sequence of length 6.

Example. PCSS with parameter �M;N ; L� � �4; 2; 6�:
S1 � f1; −1; −1; −1; −1; −1g;
S2 � f1; 1; 1; 1; −1; −1g;
S3 � f−1; 1; −1; 1; −1; −1g;
S4 � f−1; −1; 1; 1; −1; 1g:

Then, the sequences are mapped onto a two-dimensional
lattice, following procedures similar to Eqs. (14) and (16).
Now a natural question that arises is: for a given alphabet, what
are the possible lengths for which there exists a PCSS? and how
to design them? This will be addressed in the remaining
sections.

A natural way to construct a PCSS is to synthesize them
from existing designs. Some synthesis methods have been pro-
vided for binary PCSS in [41], and they could be easily ex-
tended to the nonbinary case. In the following two sections,
we propose some different synthesis methods.

At the end of this subsection, there are two remarks worth
mentioning. First, the concept of PCSS is not new. It was once
referred to as “periodic complementary sequences” or “periodic
complementary binary sequences” [41]. To the best of our
knowledge, prior works mainly focused on the binary case.
One possible reason is its intimate relationship with cyclic dif-
ference sets [42]. Second, complementary sequence sets are
subclasses of PCSS due to the following fact:

AS
p�v� � AS

a �v� � AS
a �v − L� ∀ v ∈ Z; 0 ≤ v < L; (18)

where S is a sequence of length L, and Ap�·� and Aa�·� respec-
tively denote periodic and aperiodic autocorrelations.

B. Synthesis Methods from the Chinese Remainder
Theorem

1. PCAS Synthesized from PCSS and Perfect Sequence

A sequence is called a “perfect sequence” if its periodic auto-
correlation is a periodic extension of the discrete delta function.
Consider a PCSS fSmgMm�1 of length s, and a perfect sequence
S of length t . We can then construct a PCAS fCmgMm�1 of size
s × t (or similarly t × s):

Cm�i; j� � Sm�i�S�j�; m � 1; � � � ; M; i; j ∈ Z: (19)

Proof: The periodic autocorrelation of Cm satisfies

ACm�v1; v2� � ASm�v1�AS�v2�:

Thus, for any v1, v2 ∈ Z, �v1; v2� ≠ �0; 0�,
XM
m�1

ACm�v1; v2� �
�XM

m�1

ASm�v1�
�
AS�v2� � 0:

2. PCSS Synthesized from PCSS and Perfect Sequence

Consider a PCSS fSmgMm�1 of length s, and a perfect sequence S
of length t . Also assume that s and t are coprime. We can then
construct a PCSS fS̃mgMm�1 of length st :

S̃m�i� � Cm�imod s; imod t �; i ∈ Z; (20)

where fCmg is given in Subsection 4.B.1.
Proof: Equation (20) provides a one-to-one mapping

between a sequence and an array, guaranteed by the Chinese
remainder theorem. The mapping is linear so that the autocor-
relation function is preserved, i.e.,

AS̃m�v� � ACm�vmod s; vmod t�;
and thus the sequence set fS̃mgMm�1 is complementary.

3. PCSS/PCAS from Two PCSSs with Coprime Lengths

Consider a PCSS fSm1
gM 1
m1�1 of length s, and another PCSS

fTm2
gM 2
m2�1 of length t . We can then construct a PCAS

fC �m1 ;m2�g of size s × t:

C �m1 ;m2��i; j� � Sm1
�i�Tm2

�j�; (21)

where m1 � 1; � � � ;M 1, m2 � 1; � � � ;M 2, and i; j ∈ Z.
Further, if s and t are coprime, we can construct a PCSS of
length st.

Proof: For a given 1 ≤ m2 ≤ M 2,

XM 1

m1�1

AC �m1 ;m2� �v1; v2� �
�
s · ATm2 �v2� v1 � 0
0 otherwise:

Thus, for v1; v2 ∈ Z; �v1; v2� ≠ �0; 0�,
XM 2

m2�1

XM 1

m1�1

AC �m1 ;m2� �v1; v2� �
XM 2

m2�1

�XM 1

m1�1

AC �m1 ;m2� �v1; v2�
�
� 0:

If s and t are coprime, a PCSS could be designed using the
mapping given in Eq. (20).

Remark 8 This result is stronger than that given in [41,
Theorem 6], since it does not require the number of sequences
to be relatively prime.

4. PCAS Constructed from Another PCAS of a Different
Size

Assume that we have a PCAS of size s × t synthesized
from PCSS fSm1

gM 1
m1�1 and fTm2

gM 2
m2�1 using the method in

Subsection 4.B.3. Suppose that gcd�s; t� ≠ 1, but s � s1s2
for some s1 ≠ 1 and s2 ≠ 1, where gcd�s1; s2� � gcd�s2; t� � 1.
A PCAS of size s1 × s2t could be designed by first mapping the
PCSS fSm1

gM 1
m1�1 to a PCAS of size s1 × s2 in a way similar to

Eq. (19), then constructing a three-dimensional PCAS of size
s1 × s2 × t in a way similar to Eq. (19), and finally mapping the
latter two dimensions to a single dimension in a way similar to
Eq. (20), resulting in a PCAS of size s1 × s2t.
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C. Synthesis via Unitary Matrices

Theorem 5 For any positive integer s, there exists at least one
PCSS with design parameters �M;N ; L� � �pn; p1 � � � pn; s�,
where p1 < � � � < pn are all the distinct prime divisors of s.

For any positive integers s1; � � � ; sk, there exists at least one
PCAS of size s1 × � � � × sk with design parameters �M;N ; L� �
�pn; p1 � � � pn; st�, where p1 < � � � < pn are all the distinct prime
divisors of s1 � � � sk.

The proof is included in Appendix C.
Remark 9 Theorem 5 gives the construction for PCAS of an

arbitrary size, where the alphabet is determined by the product of
the distinct prime divisors of the size, and the order is the largest
prime divisor. From the proof of Theorem 5, the result also holds for
aperiodic autocorrelations.

A natural question that arises is how tight the result in Theorem
5 is. Specifically, is there any solution whose orderN is less than pn?
This is clearly not the case for Golay complementary sequence pair,
where the size s is a power of 2. Although we were not able to
answer this question in general, we were able to prove the following
results.

Theorem 6 For any prime number p, a p-regular set, denoted
by RC �p�, is defined to be a set of p distinct unimodular complex
numbers that form the vertices of a uniform polygon in the complex
plane. Let N � pr11 � � � prnn , rj ≥ 1 be a positive integer with
distinct prime divisors pj; j � 1; � � � ; n. Consider M variables
x1; � � � ; xM that take values in the set of N th root of unity.
Suppose that

PM
m�1 xm � 0.

1. If n ≤ 2, the set fxmgMm�1 can be written as the unions of
pk-regular configurations, i.e.,

fx1; � � � ; xM g � ⋃
f�k;j�jck>0;k�1;���;n;j�1;���;ckg

RC �pk�
j : (22)

2. If n ≤ 2, M can be written as

M � c1p1 � � � � � cnpn; (23)

where c1; � � � ; cn are nonnegative integers.

The proof is given in Appendix D.
Remark 10 Consider an aperiodic complementary array set

fSmgMm�1 with design parameters �M;N ; L�. Then we havePM
m�1 Sm�0�Sm�L − 1� � 0. Assume that the alphabet isN -phase,

where N � pr11 (n � 1) or N � pr11 p
r2
2 with p1 and p2 distinct

primes (n � 2). Applying Theorem 6, Eq. (23) implies that
(1) M ≥ p1 if n � 1; (2) M ≥ minfp1; p2g if n � 2. Due to
similar reasons,M � 7 in Design 7 is tight wheneverN is a power
of 7.

5. SIMULATION RESULTS

We have performed computer simulations to demonstrate a
multichannel CAI system and a classical URA-based one.

The multichannel CAI system that we select comes from
Design 2. Admittedly, in practice we only need four pairs of
aperture arrays with f−1; 1g-alphabet. But the coded images
contain negative entries, which are not straightforward to
illustrate by simulation (we used MATLAB software). We thus
provide an alternative approach, which relies on the follow-
ing lemma.

Lemma 2 Suppose that f�Cm;Dm�gMm�1 is a complementary
bank with alphabet A � f−1; 1g and it satisfies PM

m�1 Dm � 0.
Then f�C̃m; Dm�gMm�1 is a complementary bank, where
C̃m � �Cm � J�∕2. m � 1; � � � ; M . Here, 0 and J respectively
denote the array of zeros and the array of ones, whose supports are
the same as Dm.

Proof 2 The proof follows immediately from

XM
m�1

C̃m 	 D−
m �

XM
m�1

1

2
�Cm � J� 	 D−

m

� 1

2

XM
m�1

Cm 	 D−
m � 1

2
J 	

�XM
m�1

Dm

�−

� 1

2

XM
m�1

Cm 	 D−
m: (24)

The above result gives a general method to design a mask with
simple closing/opening pinholes (the elements of C are either 0
or 1). In practice, the method is of interest on its own right, but
we do not elaborate here. As a corollary of Lemma 2, it is easy to
see that if fCmgMm�1 is a complementary array set with alphabet
A � f−1; 1g, then��

1

2
�Cm � J�; Cm

��
M

m�1

⋃
��

1

2
�−Cm � J�; −Cm

��
M

m�1

is a complementary bank.
Following Design 2 and the above result, we obtain the

following eight-channel CAI f�Cm;Dm�g8m�1, each with a mask
as shown in Fig. 5. The coding arrays are

fC1�k�g6k�0 � f1; 1; 0; 1; 1; 0; 1g;
fC2�k�g6k�0 � f0; 1; 1; 0; 0; 1; 1g;
fC3�k�g6k�0 � f1; 1; 0; 1; 0; 1; 1g;
fC4�k�g6k�0 � f1; 1; 1; 0; 1; 0; 1g;
fC5�k�g6k�0 � f0; 0; 1; 0; 0; 1; 0g;
fC6�k�g6k�0 � f1; 0; 0; 1; 1; 0; 0g;
fC7�k�g6k�0 � f0; 0; 1; 0; 1; 0; 0g;
fC8�k�g6k�0 � f0; 0; 0; 1; 0; 1; 0g:

If we choose the element labeled 0 to be the origin, the decod-
ing arrays are

fD1�k�g6k�0 � f1; 1; −1; 1; 1; −1; 1g;
fD2�k�g6k�0 � f−1; −1; 1; 1; 1; 1; −1g;
fD3�k�g6k�0 � f1; −1; 1; 1; 1; −1; 1g;
fD4�k�g6k�0 � f1; 1; −1; 1; 1; 1; −1g;
fD5�k�g6k�0 � f−1; −1; 1; −1; −1; 1; −1g;
fD6�k�g6k�0 � f1; 1; −1; −1; −1; −1; 1g;
fD7�k�g6k�0 � f−1; 1; −1; −1; −1; 1; −1g;
fD8�k�g6k�0 � f−1; −1; 1; −1; −1; −1; 1g:

Figure 17 illustrates how a source object is coded and decoded
in a multichannel system. The source object is a 130 × 130
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pixels “camera man” image and the distance between two pin-
holes is 60 pixels. The gray level is normalized to be in the range
of [0, 255]. It is worth mentioning that the bright (white) part
of the images produced by MATLAB (as shown in Figs. 16–18)
corresponds to low light intensity in the real world.

The second simulation is for URAs (shown in Fig. 18). It
uses the same source object and following aperture:"

0 1 1 1 1
0 0 1 1 0
0 1 0 0 1

#
; (25)

which is a 3 × 5 array that comes from the m-sequence of length
15 (see Subsection 3.A for details). In the implementation, we
use the arrangement suggested by [7], i.e., a 6 × 10 aperture
composed of a periodic extension of the basic 3 × 5 patterns
(with 32 open pinholes), and a 3 × 5 decoding array.

Next, we repeat the experiment by taking noises into ac-
count. We first assume additive noises that follow independent
Poisson distributions. In other words, the recorded image at the
kth pinhole of the coding aperture is O� nk, where O and nk
respectively denote the array of source image and noises, and
each pixel nk �i; j� is an independent Poisson random variable
with rate (expectation) λ. For each λ, we obtain the recon-
structed 130 × 130 images from the multichannel CAI system
[the bottom-right of Fig. 17(b)] and from the URA-based
CAI system [the center of Fig. 18(b)], denoted respectively
by Ôm, Ôu. Then we compute the log of SNR ratio
sm � log�‖O‖2F∕‖Ôm − O‖2F �, su � log�‖O‖2F∕‖Ôu − O‖2F �
(where ‖ · ‖F denotes the Frobenius norm) based on the aver-
age of 20 independent repetitions. (In the computation, we
have normalized the pixel values to the range [0, 1], with 0
and 1 respectively denoting the lowest intensity and the highest
intensity.) We repeat the experiment for λ � 10; 20; 30; 40; 50,
and obtain sm∕su � 6.1∕6, 5/4.8, 4.3/4.2, 3.8/3.7, 3.5/3.3, re-
spectively. This result shows that the eight-channel CAI with

28 open pinholes achieves better SNR gain compared to the
URA with 32 open pinholes.

It is usually more reasonable to assume that the noise is sig-
nal dependent, especially in our “camera man” example where
there is a significant part of low-intensity background. We thus
repeat the experiment by assuming photon noise, also known as
Poisson noise. In other words, the recorded image at the kth
pinhole of the coding aperture is O� nk, whose �i; j�th pixel is
an independent Poisson random variable with rate O�i; j�.
We repeat the experiment 20 times and obtain the average
log SNR sm � 6.2920, su � 5.2781. The result shows that
the eight-channel CAI achieves much better SNR even though

Fig. 16. Comparison of (a) the source image, (b) the image from a
single pinhole, (c) the image from the multichannel CAI system, and
(d) the image from the URA-based CAI system, under Poisson noises.

Fig. 17. Demonstration of the encoding and decoding process of a
multichannel CAI system. (a) The upper-left image, “cameraman,” is
the source image. From the upper-middle to the bottom-right, the
images are the coded images from apertures C1;…;C8 in each chan-
nel. (b) From the upper-left to the bottom-middle, the images are the
decoded results from D1;…;D8 in each channel. The bottom-right
image is the reconstructed image, coming from the addition of the
eight decoded results.
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it uses only 28 open pinholes, compared with the URA-based
design. For illustration purpose, Fig. 16 plots the source image,
the recorded image from a single pinhole, the reconstructed
image from the eight-channel CAI system, and the image from
the URA-based one, under signal-dependent Poisson noises in
one experiment.

6. CONCLUSION

In this work, two classes of coded aperture imaging systems
are studied that are constructed based on aperiodic or periodic
correlations. For the first case, we extended the concept of
Golay complementary array pairs to complementary array sets
and complementary array banks on lattices. Under the general
framework, we provided methods and examples for the design
of the complementary arrays. The findings not only lead to
more flexible and robust designs of the coded aperture imaging
systems, but also bring new theoretical insights. For the second
case, we reviewed the state-of-the-art URA designs and further
proposed some new classes of the URA designs. Simulation re-
sults are provided to demonstrate our proposed scheme.

APPENDIX A: PROOF OF THEOREM 1

The following lemmas are helpful to the proof of Theorem 1.
Lemma 3 If complex numbers α1; � � � ; α4 are unimodular and

satisfy
P

4
k�1 αk � 0, then they contain two opposite pairs.

Proof of Lemma 3:
Let y � α1 � α2, z � �−α3� � �−α4�, then y � z. Because

jα1j � jα2j � 1, y is on the bisector of α1 and α2. Similarly, z is
on the bisector of −α3 and −α4. Since y � z, we have α1 � −α3
or α1 � −α4.

Lemma 4 If roots of unity α1, α2 satisfy jα1 − 2α2j � 1,
then α1 � α2.

Proof of Lemma 4:
The identity 1 � �α1 − 2α2��ᾱ1 − 2ᾱ2� � 1 − 2�α1ᾱ2 �

ᾱ1α2� � 4 implies α1ᾱ2 � 1, i.e., α1 � α2.
Proof of Theorem 1:
Assume that there exists a complementary array pair.

Writing down (2) explicitly we obtain the following system
of equations consisting of nine equations and 14 variables
fxkg6k�0 ∪ fykg6k�0:

x1x̄3 � x6x̄4 � y1ȳ3 � y6ȳ4 � 0; (A1)

x0x̄1 � x3x̄2 � x5x̄6 � x4x̄0 � y0ȳ1 � y3ȳ2 � y5ȳ6 � y4ȳ0 � 0;

(A2)

x1x̄4 � y1ȳ4 � 0; (A3)

x2x̄4 � x1x̄5 � y2ȳ4 � y1ȳ5 � 0; (A4)

x0x̄2 � x6x̄1 � x4x̄3 � x5x̄0 � y0ȳ2 � y6ȳ1 � y4ȳ3 � y5ȳ0 � 0;

(A5)

x2x̄5 � y2ȳ5 � 0; (A6)

x3x̄5 � x2x̄6 � y3ȳ5 � y2ȳ6 � 0; (A7)

x0x̄3 � x1x̄2 � x5x̄4 � x6x̄0 � y0ȳ3 � y1ȳ2 � y5ȳ4 � y6ȳ0 � 0;

(A8)

x3x̄6 � y3ȳ6 � 0: (A9)

We only need to prove that the above system of equations have
no solution on the unit circle. Assume without loss of generality
that x1 � y1 � 1. After simplifying Eqs. (A3), (A1), (A6), and
(A9) we have

y4 � −x4; (A10)

y3 � −�x3 � �x̄6 − x̄4�x4� � −x3 − x̄6x4 � 1; (A11)

y5 � −x̄2x5y2; (A12)

y6 � −x̄3x6y3: (A13)

From Eq. (A11), we obtain y3 � x3 � x̄6x4 − 1 � 0. Due to
Lemma 3, we have three cases to consider:

Case A: y3 � 1, x4 � −x3x6; Case B: x3 � 1, y3 � −x4x̄6;
Case C: x6 � x4, y3 � −x3.

Case A: y3 � 1, x4 � −x3x6
From Eqs. (A10), (A12), and (A13), we eliminate variables

x4, y3, y4, y5, y6 in Eqs. (A4) and (A7) and obtain

−x2x̄3x̄6 � x̄5 � x̄3x̄6y2 − x2x̄5ȳ2 � 0; (A14)

x3x̄5 � x2x̄6 − x2x̄5ȳ2 − x3x̄6y2 � 0: (A15)

We write Eqs. (A14) and (A15) as

x5x̄3�x2 − y2� � x6�1 − x2ȳ2�; (A16)

x5�x̄3 − x̄2y2� � x6�x̄3ȳ2 − x̄2�: (A17)

If x2 ≠ y2, Eq. (A16) gives

x5 � x3
1 − x2ȳ2
x2 − y2

x6 � −x3ȳ2x6:

If x2 ≠ x3y2, Eq. (A17) gives

x5 �
x̄3ȳ2 − x̄2
x̄3 − x̄2y2

x6 � ȳ2x6:

So there are four cases to consider that further eliminate the
variables.

Case A1: x5 � −x3ȳ2x6, x5 � ȳ2x6
Clearly, x3 � −1. Eliminating variables in Eqs. (A2) and

(A8) we obtain

�x0 − x̄2 − x̄2 − x6ȳ0� � �ȳ2 � x6x̄0 � y0 � ȳ2� � 0;

− �x0 − x̄2 − x̄2 − x6ȳ0� � �ȳ2 � x6x̄0 � y0 � ȳ2� � 0;

which is equivalent to

x0 − x̄2 − x̄2 − x6ȳ0 � 0; (A18)

ȳ2 � x6x̄0 � y0 � ȳ2 � 0: (A19)

We further obtain

y0 � x6�x̄0 − 2x2�; (A20)

y2 � x̄6�x̄2 − x0�: (A21)

Equation (A20) gives jx̄0 − 2x2j � 1, which further implies
that x̄0 � x2. This is a contradiction to Eq. (A21).
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Case A2: x2 � y2, x5 � ȳ2x6
We only need to check the validity of Eqs. (A2), (A5), and

(A8). We write them in terms of five variables x0, x2, x3, x6, y0:

x0 � x3x̄2 � x̄2 − x3x6x̄0 � y0 � x̄2 � x̄2x3 � x3x6ȳ0 � 0;

(A22)

x0x̄2 � x̄2x6x̄0 � y0x̄2 − x̄3x6 � x3x6 − x̄2x6ȳ0 � 0;

x0 � x3x̄2 − x̄2 � x3x6x̄0 � y0x3 � x̄2x3 − x̄2 − x6ȳ0 � 0:

(A23)

In fact, a contradiction can be obtained from Eqs. (A22) and
(A23). Taking the sum and difference of the two equations, we
obtain

�x3 � 1�y0 � �x3 − 1�x6ȳ0 � −4x̄2x3 − 2x0; (A24)

�x3 � 1�x6ȳ0 − �x3 − 1�y0 � −4x̄2 � 2x3x6x̄0: (A25)

If we have a valid solution �x2; x3; x0; y0; x6�, it is easy to see
that �ξ−1x2; x3; ξx0; ξy0; ξ2x6� is also a valid solution for any
unimodular complex number ξ. Therefore, we only need to
consider the case x6 � 1. Replacing x6 � 1 into Eq. (A25),
multiplying the equation with −x̄3, and then taking the con-
jugate, we obtain

−�x3 � 1�y0 − �x3 − 1�ȳ0 � 4x2x3 − 2x0: (A26)

Adding Eqs. (A24) and (A26) gives

x0 � �x2 − x̄2�x3: (A27)

From the identity 1 � jx0j � jx2 − x̄2jjx3j � jx2 − x̄2j, x2 is in
the form of ffiffiffi

3
p

2
δ1 �

i
2
δ2; δ1; δ2 ∈ f1; −1g: (A28)

Combining Eqs. (A28) and (A27) gives x0 � iδ2x3. Further-
more, Eq. (A24) is simplified to be

�x3 � 1�y0 � �x3 − 1�ȳ0 � −2
ffiffiffi
3

p
δ1x3: (A29)

Equation (A29) implies that

2
ffiffiffi
3

p
� j�x3 � 1�y0 � �x3 − 1�ȳ0j ≤ jx3 � 1j � jx3 − 1j
≤ 2

ffiffiffi
2

p
;

which is a contradiction.
Case A3: x5 � −x3ȳ2x6, x2 � x3y2
First, we rewrite Eqs. (A2) and (A8) in terms of x0, x3, x6,

y0, y2:

x0 � 2ȳ2 − 2x3ȳ2 − x3x6x̄0 � y0 � x3x6ȳ0 � 0; (A30)

x0x̄3 � 2x̄3ȳ2 � 2ȳ2 � x6x̄0 � y0 − x̄3x6ȳ0 � 0: (A31)

If we have a valid solution �y2; x3; x0; y0; x6�, it is easy to see
that �ξ−1y2; x3; ξx0; ξy0; ξ2x6� is also a valid solution for any
unimodular complex number ξ. Therefore, we only need to
consider the case x6 � 1. By computing Eq. (A30) �x3.
Eqs. (A31) and (A30) −x3. Eq. (A31) we obtain

�x3 � 1�y0 � �x3 − 1�ȳ0 � −4ȳ2 − 2x0; (A32)

−�x3 � 1�ȳ0 � �x3 − 1�y0 � −4x3ȳ2 − 2x3x̄0: (A33)

Multiplying Eq. (A33) by x̄3, and then taking the conjugate, we
obtain

−�x3 � 1�y0 − �x3 − 1�ȳ0 � −4y2 − 2x0: (A34)

Adding Eqs. (A32) and (A34) we obtain

x0 � −�y2 � ȳ2�:
Thus, y2 is in the form of

y2 �
1

2
δ1 �

ffiffiffi
3

p
i

2
δ2; δ1; δ2 ∈ f1; −1g:

Furthermore,

x0 � −δ1;

�x3 � 1�y0 � �x3 − 1�ȳ0 � −2
ffiffiffi
3

p
δ2;

which implies that 2
ffiffiffi
3

p
≤ 2

ffiffiffi
2

p
.

Fig. 18. Demonstration of the encoding and decoding process of a URA-based CAI system: the coded aperture produces a cyclic version of the
basic aperture pattern in (a), from which the source image is reconstructed in the center area in (b).
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Case A4: x2 � y2, x2 � x3y2
Similar to Case A1, Eqs. (A2) and (A8) imply

−�2x̄2 � x0� � y0; (A35)

x5x̄6 − x6�x̄0 � x2� � 0: (A36)

Equation (A35) implies that x̄2 � −x0, which is a contradiction
to Eq. (A36).

Case B: x3 � 1, y3 � −x4x̄6
From Eqs. (A4) and (A7), we obtain

�x̄5 − y2x̄4��1 − x2ȳ2� � 0; (A37)

�x2x̄6 � y2x̄4��1� x4x̄5ȳ2� � 0: (A38)

If y2 ≠ x4x̄5, Eq. (A37) gives x2 � y2. If x2 ≠ −x6x̄4y2,
Eq. (A38) gives x5 � −x4ȳ2. We therefore have the following
four cases to discuss.

Case B1: y2 � x4x̄5, x2 � −x6x̄4y2 � −x6x̄5
First, we rewrite Eqs. (A5) and (A8) in terms of x0, x4, x5,

x6, y0:

2x6 − x0x5x̄6 � 2x4 � x̄4x5y0 � x4x5x̄6ȳ0 � x̄0x5 � 0;

(A39)

2x̄4x5 � x0 − 2x5x̄6 − x̄4x6y0 � x4ȳ0 � x̄0x6 � 0: (A40)

If we have a valid solution �x0; y0; x4; x6; x5�, it is easy to see
that �ξx0; ξy0; ξ2x4; ξ2x6; ξ3x5� is also a valid solution for any
unimodular complex number ξ. Therefore, we only need to
consider the case x6 � 1. Taking x6 � 1 into Eqs. (A39)
and (A40), multiplying Eq. (A40) by −x̄5, and taking its
conjugate, we obtain

2 − x0x5 � 2x4 � x̄4x5y0 � x4x5ȳ0 � x̄0x5 � 0; (A41)

2 − x0x5 − 2x4 − x̄4x5y0 � x4x5ȳ0 − x̄0x5 � 0: (A42)

Adding Eqs. (A41) and (A42) gives

4 � 2x0x5 − 2x4x5ȳ0: (A43)

Because j2x0x5j � j2x4x5ȳ0j � 2, the only possibility is

x0x5 � 1; x4x5ȳ0 � −1: (A44)

Taking Eqs. (A44) into (A41) we obtain 2x4 � 0, which is a
contradiction.

Case B2: x2 � y2, x2 � −x6x̄4y2
Clearly, x6 � −x4. Because y3 � −x4x̄6 � 1, this case is

covered by Case A.
Case B3: y2 � x4x̄5, x5 � −x4ȳ2
Clearly, y2 � −x4x̄5. Because y2 � x4x̄5 � −y2, this case is

not possible.
Case B4: x2 � y2, x5 � −x4ȳ2 � −x4x̄2
First, we rewrite Eqs. (A2) and (A5) in terms of x0, x2, x4,

x6, y0:

2x̄2 − 2x̄2x4x̄6 � x0 � y0 � x4x̄0 − x4ȳ0 � 0; (A45)

2x4 � 2x6 � x0x̄2 � x̄2y0 − x̄2x4x̄0 � x̄2x4ȳ0 � 0: (A46)

If we have a valid solution �x2; x0; y0; x4; x6�, it is easy to see
that �ξ−1x2; ξx0; ξy0; ξ2x4; ξ2x6� is also a valid solution for any
unimodular complex number ξ. Therefore, we only need to
consider the case x4 � 1. Taking the conjugate of Eq. (A45),
multiplying Eq. (A46) by x̄2, and letting x4 � 1, we have

2x2 − 2x2x6 � x̄0 � ȳ0 � x0 − y0 � 0; (A47)

2x2 � 2x2x6 � x0 � y0 − x̄0 � ȳ0 � 0: (A48)

Adding Eqs. (A47) and (A48), we obtain

4x2 � 2x0 � 2ȳ0 � 0: (A49)

Because j4x2j � 4, j2x0j � j2ȳ0j � 2, the only possibility is

x0 � −x2; ȳ0 � −x2: (A50)

Applying Eqs. (A47)–(A50) gives 2x2x6 � 0, which is a contra-
diction.

Case C: x6 � x4, y3 � −x3
From Eqs. (A4) and (A7), we obtain

�x̄5 − x̄4y2��1 − x2ȳ2� � 0; (A51)

�x̄5x3 � x̄4y2��x2 � y2� � 0: (A52)

If y2 ≠ x2, Eq. (A51) gives y2 � x4x̄5. If y2 ≠ −x2, Eq. (A52)
gives y2 � −x3x4x̄5. So there are four cases to consider.

Case C1: y2 � x2, y2 � −x3x4x̄5
First, we rewrite Eqs. (A5) and (A8) in terms of x0, x2, x3,

x4, y0:

2x4 � 2x̄3x4 � x̄2x0 � x̄2y0 − x̄2x3x4x̄0 � x̄2x3x4ȳ0 � 0;

(A53)

2x̄2 − 2x̄2x3 � x̄cx0 − x̄3y0 � x4x̄0 � x4ȳ0 � 0: (A54)

If we have a valid solution �x2; x3; x0; y0; x4�, it is easy to see
that �ξ−1x2; x3; ξx0; ξy0; ξ2x4� is also a valid solution for any
unimodular complex number ξ. Therefore, we only need to
consider the case x4 � 1. Taking the conjugate of Eq. (A54),
multiplying it by x̄2, and letting x4 � 1, Eqs. (A53) and (A54)
give

2� 2x̄3 � x̄2x0 � x̄2y0 − x̄2x3x̄0 � x̄2x3ȳ0 � 0; (A55)

2 − 2x̄3 � x̄2x0 � x̄2y0 � x̄2x3x̄0 − x̄2x3ȳ0 � 0: (A56)

Adding Eqs. (A55) and (A56) gives

4� 2x̄2�x0 � y0� � 0: (A57)

Thus jx0 � y0j � 2, the only possibility is

x0 � y0 � −x2: (A58)

Applying Eqs. (A55)–(A58), we obtain 2x̄3 � 0, which is a
contradiction.

Case C2: y2 � x4x̄5, y2 � −x2
First, we rewrite Eqs. (A2) and (A5) in terms of x0, x2, x3,

x4, y0:

2x3x̄2 − 2x̄2 � x0 � y0 � x4x̄0 − x4ȳ0 � 0; (A59)

2x4 � 2x4x̄3 � x0x̄2 − y0x̄2 − x̄2x4x̄0 − x̄2x4ȳ0 � 0: (A60)

If we have a valid solution �x2; x3; x0; y0; x4�, it is easy to see
that �ξ−1x2; x3; ξx0; ξy0; ξ2x4� is also a valid solution for
any unimodular complex number ξ. Therefore, we only need
to consider the case x4 � 1. Taking the conjugate of Eq. (A60),
multiplying it by x̄2, and letting x4 � 1, Eqs. (A59)
and (A60) give

2x3x̄2 − 2x̄2 � x0 � y0 � x̄0 − ȳ0 � 0; (A61)

2x3x̄2 � 2x̄2 − x0 − y0 � x̄0 − ȳ0 � 0: (A62)
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Subtracting Eqs. (A62) and (A61), we obtain

4x̄2 − 2�x0 � y0� � 0: (A63)

Thus jx0 � y0j � 2, and the only possibility is

x0 � y0 � x̄2: (A64)

Applying Eqs. (A61)–(A64), we obtain 2x3x̄2 � 0, which is a
contradiction.

Case C3: y2 � x4x̄5, y2 � −x3x4x̄5
This case is covered by Case A, because x3 � −1,

y3 � −x3 � 1.
Case C4: y2 � x2, y2 � −x2
This case is clearly not possible.

APPENDIX B: PROOF OF THEOREM 2

The proof follows a similar procedure to that of the proof of
Theorem 1. The only difference is that the modulus of x0, y0
are changed from one to zero. Related changes in the proof in
Appendix A are listed below.

Case A1: Eq. (A18) gives 2x̄2 � 0, which is a contradiction.
Case A2: Eq. (A24) gives 4x̄2x3 � 0, which is a contra-

diction.
Case A3: Eq. (A32) gives 4ȳ2 � 0, which is a contradiction.
Case A4: Eq. (A35) gives 2x̄2 � 0, which is a contradiction.
Case B1: Eq. (A43) gives 4 � 0, which is a contradiction.
Case B4: Eq. (A49) gives 4x2 � 0, which is a contradiction.
Case C1: Eq. (A57) gives 4 � 0, which is a contradiction.
Case C2: Eq. (A63) gives 4x̄2 � 0, which is a contradiction.

APPENDIX C: PROOF OF THEOREM 5

We prove the first part constructively. Using Eq. (18), we ob-
serve that it suffices to construct an aperiodic complementary
array set. Without loss of generality, assume that s �
pq11 × pq22 � � � × pqnn is a prime factorization of s, where qj ≥ 1

and pj’s are distinct for j � 1; � � � ; n. Let S�0� � fS�0�m gp1m�1

be a set of p1 sequences each of which contains a single point
1, i.e., S�0� has design parameters �M;N ; L� � �p1; 1; 1�.

In the first iteration, we apply Theorem 3 to S�0� with U
equal to the Fourier matrix F p1 while satisfying Remark 3
conditions to obtain a (one-dimensional) complementary array
set with �M;N ; L� � �p1; lcm�p1; 1�; p1 × 1� � �p1; p1; p1�.
Applying Theorem 3 a second time, we obtain a complemen-
tary array set with �M;N ; L� � �p1; lcm�p1; p1�; p1 × p1� �
�p1; p1; p21�. After applying Theorem 3 to S�0� q1 − 1 times,
we obtain the complementary array set S�1� with �M;N ; L� �
�p1; p1; pq1−11 �.

In the second iteration, we first apply Theorem 4 to S�1�

with M̃ � p2 while satisfying Remark 5 conditions. The result-
ing complementary array set has parameters �M;N ; L� �
�p2; lcm�p1; p2�; p1 × pq1−11 � � �p2; p1p2; pq11 �; then we apply
Theorem 3 q2 − 1 times with U being the Fourier matrix F p2
to create the complementary array set S�2� with �M;N ; L� �
�p2; p1p2; pq11 pq2−12 �.

By recursive construction as above, after wth iteration we
obtain the complementary array set S�w� with �M;N ; L� �
�pn; p1 � � � pn; pq11 pq22 � � � pqn−1n �. Finally, applying Theorem 3
with U equal to the Fourier matrix F pn an extra time to S�w�,

we obtain a complementary array set with �M;N ; L� �
�pn; p1p2 � � � pn; pq11 pq22 � � � pqnn �.

The proof of the second part is similar.

APPENDIX D: PROOF OF THEOREM 6

Let Z�λ� denote the polynomial ring over Z, and ΦN �λ� denote
the N th cyclotomic polynomial. Let ξ � exp�i2π∕N �, UN �
fξjjj � 0; � � � ; N − 1g be the group of N th roots of unity en-
dowed with multiplication. For any η ∈ UN, let jηj denote the
order of η in the cyclic group UN . Because

PM
m�1 xm � 0,

there exists a polynomial F�λ� � PN−1
j�0 f jλ

j ∈ Z�λ� such that
f j ≥ 0 and F�ξ� � 0.

We prove Theorem 6 using a sequence of lemmas.
Lemma 5 Let pk be distinct prime numbers and integers

rk > 0, k � 1; 2. Then,

Φp1�λp
r1−1
1 pr22 � �

Yr2
i�0

Φpr11 pi2
�λ�; (D1)

Φp1�λp
r1−1
1 pr22 � � Φp1�λp

r1−1
1 pr2−12 �Φpr11 pr22

�λ�; (D2)

Φp1�λp
r1−1
1 � � Φpr11

�λ�: (D3)

Similar results hold if p1 and r1 are respectively replaced with p2
and r2 in the above equations.

Proof of Lemma 5:
Since both sides are monic and have degree �p1 − 1�

pr1−11 � �p1 − 1�pr1−11 pr22 , it suffices to show that every zero of
Φpr11 pi22

�λ� is a zero ofΦp1�λp
r1−1
1 �. If η is a zero ofΦpr11 pi22

�λ�, then
jηj � pr11 p

i2
2 , which implies jηpr1−11 j � jηj∕ gcd�jηj; pr1−11 � � p1.

Therefore, η is also a zero of Φp1�λp
r1−1
1 �.

The proof of Eqs. (D2) and (D3) is similar.
Lemma 6 If n � 1, i.e., N � pr11 , then there exists a polyno-

mial A�λ� � PN∕p1−1
j�0 ajλj ∈ Z�λ�, aj ≥ 0, such that

F �λ� � Φp1�λ
N
p1�A�λ�:

Proof of Lemma 6:
First, ΦN �λ� divides F �λ�, because F �λ� annihilates ξ and

ΦN �λ� is an irreducible and monic polynomial in the ring Z�λ�.
Besides this, Eq. (D3) gives Φp1�λN∕p1� � ΦN �λ�. Therefore,
there exists a polynomial Ak�λ� �

PN∕p1−1
j�0 ajλj ∈ Z�λ� such

that F �λ� � Φp1�λN∕p1�A�λ�.
Second, because deg�F � < N , we have deg�A� � deg�F �−

deg�ΦN �λ�� < pr1−11 � N∕p1. We note that f j � aj,
j � 0; � � � ; N∕p1 − 1 and that f j ≥ 0. Therefore, the coeffi-
cients of A�λ� are nonnegative.

Lemma 7
If n � 2, i.e., N � pr11 p

r2
2 , then there exist polynomials

Âk�λ� ∈ Z�λ�, k � 1; 2 such that

Â1�λ�Φp1�λ
N
p1� � Â2�λ�Φp2�λ

N
p2� � ΦN �λ�: (D4)

Proof of Lemma 7:
First, Eq. (D1) and its similar result (by replacing p1, r1 with

p2, r2) imply that gcd�Φp1�λN∕p1�, Φp2�λN∕p2�� � ΦN �λ�.
Second, consider two polynomials T tk �λ� � 1� λ� � � ��

λtk−1, k � 1; 2, where t1 > t2 and gcd�t1; t2� � 1. We apply
Euclidean division to t1, t2 to obtain t1 � t2q � b,
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0 < b < t2. It is easy to observe that T t1�λ� � T t2�λ�Pq
j�1 λ

t1−jt2 � T b�λ�. If we continuously apply Euclidean
division, we will find polynomials Âk�λ� ∈ Z�λ�, k � 1; 2 such
that

Â1�λ�T t1�λ� � Â2�λ�T t2�λ� � 1: (D5)

Replacing t1, t2, and λ respectively by p1, p2, and λN∕�p1p2� in
Eq. (D5), multiplying both sides byΦN �λ�, and using Eq. (D2)
and its similar result, we obtain Eq. (D4).

Lemma 8
If n � 2, i.e., N � pr11 p

r2
2 , then there exist polynomials

Ak�λ�, deg�Ak� ≤ N∕pk − 1, k � 1; 2 such that F �λ� � P
2
k�1

Ak�λ�Hk�λ�, where Hk�λ� � Φpk �λN∕pk�, k � 1; 2.
Proof of Lemma 8:
Clearly, ΦN �λ� divides F �λ� due to the reason mentioned

before. Therefore, Lemma 7 implies that there exist polyno-
mials Âk�λ� ∈ Z�λ�, k � 1; 2 such that F�λ� � P

2
k�1 Âk�λ�

Hk�λ� holds.
It is easy to see that λdHk�λ� can be written as λdHk�λ� �

�λN − 1�Q�λ� � λd 0Hk�λ� for some Q�λ� ∈ Z�λ�, 0 ≤ d 0 ≤
N∕pk − 1. Thus, there exist polynomials Ak�λ�, deg�Ak� ≤
N∕pk − 1, k � 1; 2, and W �λ� such that

F �λ� �
X2
k�1

Ak�λ�Hk�λ� �W �λ��λN − 1�:

Since deg�F� ≤ N∕pk − 1, we obtain W �λ� � 0.
Lemma 9
The coefficients of Ak�λ�, k � 1; 2 in Lemma 8 can be made

nonnegative.
Proof of Lemma 9:
Let
DF � f�a10; � � � a1�N∕p1−1�; a20; � � � ; a2�N∕p2−1��jF�λ�

�
XNp1−1
j1�0

a1j1H 1�λ� �
XNp2−1
j2�0

a2j2H 2�λ�g:

D�2�
F �

�
�a10; � � � a1�N∕p1−1�; a20; � � � ; a2�N∕p2−1��jF �λ�

�
XNp1−1
j1�0

a1j1H 1�λ� �
XNp2−1
j2�0

a2j2H 2�λ�;

a2j2 ≥ 0; j2 � 0; � � � ; N
p2

− 1:
�
:

For a fixed integer 0 ≤ j ≤ N∕p1 − 1, consider the set
fj� kN∕p1; k � 0; � � � ; p1 − 1gmodN . For each k � 0; � � � ;
p1 − 1, we apply Euclidean division to j� kN∕p1 and
N∕p2, and obtain integers 0 ≤ gk ≤ N∕p2 − 1, 0 ≤ hk ≤
p2 − 1 such that j� kN∕p1 � gk � hkN∕p2. Because of the
identity

⋃
p2−1

τ�0

fgk � �hk � τ�N∕p2; k � 0; � � � ; p1 − 1g

� ⋃
p1−1

k�0

fgk � �hk � τ�N∕p2; τ � 0; � � � ; p2 − 1g modN;

within the set DF we can always decrease a1�j�τN∕p2 mod�N∕p1��;
τ � 0; � � � ; p2 − 1 by one, while increasing a2gk , k � 0; � � � ;

p1 − 1 by one. We conclude that the subset D�2�
F of DF is not

empty. To finish the proof, it suffices to show that withinD�2�
F ,

there exists an element with a1j1 ≥ 0 for all j1 � 0; � � � ;
N∕p1 − 1. If this is not true, then there exists μ < 0 such that

μ � max
�a10;���a1�N∕p1−1� ;a20;���;a2�N∕p2−1��∈D

�2�
F

n
min

n
a10; � � � ; a1�Np1−1�

oo
:

(D6)

Suppose that a1j � μ. For each k � 0; � � � ; p1 − 1, consider
the nonnegative coefficient of the item λj�kN∕p1 in F �λ�:
A1�λ�H 1�λ� contributes a negative value a1j to it, and thus
A2�λ�H 2�λ� contributes a positive value. In other words, there
exist integers 0 ≤ gk ≤ N∕p2 − 1, 0 ≤ hk ≤ p2 − 1 such that
j� kN∕p1 � gk � hkN∕p2 and that a2gk > 0. It is clear that
gk, k � 0; � � � ; p1 − 1 are distinct values. By similar reasoning as
before, we can increase a1�j�τN∕p2 mod�N∕p1��, τ � 0; � � � ; p2 − 1
by one, while decreasing a2gk , k � 0; � � � ; p1 − 1 by one, in
order to get another element in D�2�

F . Thus, we can increase

max
�a10;���a1�N∕p1−1� ;a20;���;a2�N∕p2−1��∈D

�2�
F

n
min

n
a10; � � � ; a1�Np1−1�

oo
;

contradicting the definition of μ in Eq. (D6).
Proof of Theorem 6:
Combining Lemmas 6–9, we conclude that F �λ� can be

written as

F �λ� �
X2
k�1

Ak�λ�Hk�λ�;

where Ak�λ� �
XNpk−1
j�0

akjλj ∈ Z�λ�; akj ≥ 0;

Hk�λ� � Φpk �λN∕pk� � 1� λ
N
pk � λ

2Npk � � � � � λ
�pk−1�Npk ;

which is equivalent to Eq. (22). Equation (23) then immedi-
ately follows from Eq. (22).
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