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Abstract
A poisoning backdoor attack is a rising security
concern for deep learning. This type of attack can
result in the backdoored model functioning nor-
mally most of the time but exhibiting abnormal
behavior when presented with inputs containing
the backdoor trigger, making it difficult to detect
and prevent. In this work, we propose the adapt-
ability hypothesis to understand when and why a
backdoor attack works for general learning mod-
els, including deep neural networks, based on the
theoretical investigation of classical kernel-based
learning models. The adaptability hypothesis pos-
tulates that for an effective attack, the effect of
incorporating a new dataset on the predictions of
the original data points will be small, provided
that the original data points are distant from the
new dataset. Experiments on benchmark image
datasets and state-of-the-art backdoor attacks for
deep neural networks are conducted to corrobo-
rate the hypothesis. Our finding provides insight
into the factors that affect the attack’s effective-
ness and has implications for the design of future
attacks and defenses.

1. Introduction
Recent years have seen significant growth in Deep Learn-
ing (DL) research, resulting in successful real-world ap-
plications such as autonomous driving and disease diag-
nosis (Grigorescu et al., 2020; Oh et al., 2020). However,
studies have revealed that deep neural networks (DNNs) are
susceptible to various adversarial attacks including adversar-
ial examples (Szegedy et al., 2013; Goodfellow et al., 2014)
and data poisoning attacks (Koh & Liang, 2017; Weber
et al., 2020). As DL is increasingly used in safety-critical
applications where a wrong decision can have severe conse-
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quences, the security and trustworthiness of these systems
have become critical concerns (Dreossi et al., 2019).

The recent emergence of poisoning backdoor attacks, which
exploit the learning capabilities of DNNs, has further high-
lighted the need to ensure DL systems are robust and trust-
worthy. Poisoning backdoor attacks involve the insertion of
manipulated data samples, containing specific triggers such
as a square patch, into the training data, which are then la-
beled with a specific target class. This causes a DNN trained
on the poisoned dataset to learn both the patterns present in
the original data and the artificial relationship between the
manipulated samples and the target class. As a result, the
DNN behaves maliciously when presented with test input
that includes the trigger, but functions normally for input
without the trigger, making the attack more difficult to detect
as it does not impact normal inputs.

Empirical studies have demonstrated that poisoning
backdoor attacks can be very successful with human-
imperceptible triggers and a relatively small proportion of
injected backdoor training data (Gu et al., 2017; Chen et al.,
2017; Turner et al., 2019; Zhao et al., 2020; Nguyen &
Tran, 2020; Bagdasaryan & Shmatikov, 2021; Doan et al.,
2021a;b; Qi et al., 2022; Souri et al., 2022), such that poi-
soned models can attain good test accuracy on both clean
and backdoor data. However, the understanding of when
and how these attacks are effective is still limited. For in-
stance, what is the minimum size of triggers to achieve the
desired accuracy, and what is the most efficient pattern of
the trigger? Gaining a deeper understanding of these attacks
could provide principles for researchers and practitioners to
build more secure, robust, and trustworthy DL applications.

1.1. Our contributions.

Theoretical analyses of backdoor attacks under classical
machine learning context. We analyze the effectiveness
of backdoor attacks for classical machine learning models,
such as kernel smoothing methods (Audibert & Tsybakov,
2007; Devroye et al., 2013). Our findings indicate that
larger triggers, as measured by certain norms, result in more
effective attacks. Additionally, under certain conditions,
we observed that the most effective directions for adding a
backdoor trigger are those dimensions of the data with low
variances.
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An adaptability hypothesis concerning when and how
a backdoor attack works under general machine/deep
learning context. Building on our theoretical understand-
ings, we articulate the Adaptability hypothesis to explain
the effectiveness of backdoor attacks on general learning
models, including DNNs. Intuitively, the adaptability hy-
pothesis states that when a learning model trained on dataset
D is updated with another set of arbitrarily labeled dataset
D′, the change between the outputs of the pre-updated and
post-updated models for a typical data point z from the dis-
tribution of D will be small if z is relatively distant from D′

and substantial if z is located close to D′.

The hypothesis implies that incorporating an additional
dataset, D′, will have a limited or substantial effect on the
predictions of a majority of data from the original distribu-
tion, depending on their distance from D′. It is crucial to
note that the terms ‘far’ and ‘close’ should be determined
using an appropriate metric, which may not necessarily be
restricted to Euclidean distances. A natural outcome of the
adaptability hypothesis is that to minimize the influence
on the predictions of the majority of data from the original
distribution, it is advisable to place the backdoor data as far
away as possible. Additionally, if the additional dataset is
manipulated to suit the attacker’s objectives, it can result
in a successful backdoor attack with high accuracy on both
clean and backdoor test data.

Experiments on computer vision benchmarks for validat-
ing the Adaptability hypothesis. We performed experimen-
tal studies on computer vision datasets using state-of-the-art
(SOTA) backdoor attacks (Gu et al., 2017; Qi et al., 2022)
on CNNs to test the Adaptability hypothesis, as shown in
Figure 1. Our findings suggest that the Adaptability hy-
pothesis holds true across a range of different experimental
configurations, thereby providing evidence for the validity
and practical applicability of this hypothesis.

Implications on creating future backdoor at-
tacks/defenses. We provide implications of the Adaptability
hypothesis in the design of new, effective attacks/defenses.
For instance, our theoretical findings have led to the
proposal of a new data representation that may have the
potential to improve the performance of existing defense
mechanisms (Chen et al., 2018; Tran et al., 2018) against
backdoor attacks. By utilizing popular visualization tools
such as PCA and TSNE (Van der Maaten & Hinton, 2008),
this representation allows for the clear differentiation be-
tween clean and backdoor data generated by state-of-the-art
methods (Qi et al., 2022), which is not possible with the
original data representation. While further research is
required to fully evaluate the potential of this representation,
it may lead to new defense strategies that are more effective
in detecting and filtering out backdoor samples than existing
methods (Chen et al., 2018; Tran et al., 2018) that operate

on the original data space.

Original Backdoored

Figure 1. Bottom row: An illustration of the ResNet (He et al.,
2016) satisfies the adaptability hypothesis with the MNIST dataset.
A subset of original images labeled as seven is manipulated by
adding a patch in the lower-right corner of the images (top row
of figures) and re-labeled as 0. A pre-trained ResNet is then fine-
tuned using these manipulated images. The distance (details in
Section 5) between the clean training data points labeled as 7, and
the backdoor data distribution, as well as the change in predicted
values for the clean training data before and after fine-tuning the
ResNet, are plotted. The results show that for data points that are
close to the backdoor distribution, the changes in their predicted
values are significant, while changes in predicted values are small
for data points that are far from the backdoor distribution. These
observations support the proposed Adaptability Hypothesis.

1.2. Related Work

Data poisoning attacks. Classical data poisoning attacks,
such as the manipulation of training features (Biggio et al.,
2012; Koh & Liang, 2017; Jagielski et al., 2018; Weber
et al., 2020; Jagielski et al., 2021), aimed to impair the over-
all prediction performance of machine learning models by
corrupting the training data. For instance, the contamination
of training data was used to reduce the overall accuracy of
supported vector machines (Biggio et al., 2012). However,
while data poisoning is also employed in common backdoor
attacks (Gu et al., 2017; Chen et al., 2017; Turner et al.,
2019; Li et al., 2021a; Qi et al., 2022), there are distinc-
tions between these attacks and traditional data poisoning
attacks. Specifically, backdoor attacks target specific tasks
and only manifest malicious behavior when triggered, while
preserving overall test accuracy on primary tasks.

Backdoor attacks. Backdoor attacks in machine/deep learn-
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ing aim to manipulate the predictions of a learning model
on specific inputs while having no impact on normal inputs.
There are various methods to implement backdoor attacks,
the approach considered in this paper is via data poisoning,
where the attacker manipulates the training data (Gu et al.,
2017; Chen et al., 2017; Turner et al., 2019; Li et al., 2021a;
Qi et al., 2022). Other methods involve the attacker having
full control over the training pipeline and modifying the
parameters of the learning models (Nguyen & Tran, 2020;
Bagdasaryan & Shmatikov, 2021; Doan et al., 2021a;b).

Theoretical understandings towards backdoor attacks.
To our best knowledge, (Manoj & Blum, 2021) is the only
attempt to provide theoretical analysis for poisoning back-
door attacks. The authors quantify the vulnerability of ma-
chine learning models by the capacity to memorize out-of-
distribution values, which is similar to VC-dimension (Vap-
nik et al., 1994). They proved that the necessary and suf-
ficient condition to find a successful poisoning backdoor
attack under their formulation is a non-zero memorization
capacity. We note that the definition for a successful attack
in (Manoj & Blum, 2021) is different from ours. In particu-
lar, (Manoj & Blum, 2021) require a perfect fitting for the
training data, which is often unlikely, while we only require
the models learned before and after the attack to have similar
performance for clean data. Additionally, we consider gen-
eral learning algorithms, including non-parametric methods
that (Manoj & Blum, 2021) cannot deal with.

2. Backgrounds and Formulations
Notations. In this paper, we consider backdoor attacks in
the context of binary classification problems. Let (X,Y ) ∈
Rd × {0, 1} be a random variable with probability distri-
bution PXY . We observe the original/clean training data
Dcl = {(Xi, Yi)}ncl

i=1, which are independently drawn from
PXY . The loss function for evaluating the prediction per-
formance is denoted by ℓ(·, ·) : [0, 1] × {0, 1} → R. For
two sequence of real positive numbers an and bn, we use
an = O(bn) to denote limn→∞ an/bn < ∞. For a vector
x, we use ∥x∥ to denote its ℓ2-norm ∥x∥ = (

∑d
i=1 |xi|2)1/2.

The indicator function is denoted as 1{·}.

Threat Model. We assume that attackers can only modify
the training data. This represents the minimal requirement
for backdoor attackers and is relevant to various real-world
scenarios (Li et al., 2020). Without loss of generality, we
assume that the training data is rearranged so that the first
n1 < ncl data points {Xi}n1

i=1 have ground-truth label 1, de-
noted as D1 ≜ {(Xi, Yi = 1)}n1

i=1, and the remaining data
points have ground-truth labels 0. To create the backdoor
data, the attacker selects first nbd = n1αpoi points in D1,
where αpoi ∈ (0, 1), adds a trigger η ∈ Rd and changes
their label to 0, resulting in Dbd

η = {(Xi + η, 0)}nbd
i=1. It

is important to note that the added trigger has a carefully

crafted pattern instead of random noise. Next, the attacker
will inject the backdoor data into the clean data to obtain
a joint dataset Dpoi ≜ Dcl ∪ Dbd

η for future training, with
sample size n ≜ ncl + nbd.

A learner, e.g., a third-party cloud server, will apply a su-
pervised learning procedure A on the joint dataset to ob-
tain a prediction function fDpoi

A for its downstream tasks.
A learning procedure A is a mapping from a dataset D
to a prediction function fD

A : Rd → R. Common exam-
ples of A include logistic regressions, kernel smoothing
estimators/k-nearest neighbors, and DNNs. We assume fD

A
take value in [0, 1], which is interpreted as the estimated
probability of the input having label 1. To obtain the one-
hot encoding label, one can apply the classical decision rule
of 1{fD

A (x) > 0.5}.

Whenever it is clear from the text, we use shorthand notions
of f cl, f poi, and f pbd to represent the prediction functions
obtained on dataset Dcl, Dpoi, and Dbd

η , respectively. Note
that f pbd(x) = 0 for all x ∈ Rd since the backdoor target
label is set to zero.

Backdoor Attacks Goals. Given a clean training dataset
Dcl and a learning procedure A, a poisoning backdoor attack
aims to select a backdoor trigger η ∈ Rd to minimize the
following:

• Performance gap for clean test data:

Rcl
n ≜ EpoiE(X,Y )∼PXY

[ℓ(f poi(X), Y )−ℓ(f cl(X), Y )],

where Epoi is taken with respect to Dpoi, and E(X,Y ) is
taken over the clean test data, which is a future input
independently drawn from PXY .

• Performance gap for backdoor test data:

Rbd
n ≜ EpoiEX∼Pη

1
[ℓ(f poi(X), 0)− ℓ(f pbd(X), 0)],

where Pη
1 is the distribution of X|Y = 1 shifted by η,

namely the backdoor data. The zero in the equation is
actually f pbd(x), the true label for backdoor data.

A successful backdoor attack means both Rcl
n and Rbd

n are
small.

3. Theoretical Insights
In this section, we aim to identify the factors that contribute
to the effectiveness of backdoor attacks in the realm of clas-
sical machine learning, which further leads to insights for
general learning algorithms. In particular, we derive theo-
retical results for backdoor attacks under kernel smoothing
algorithms.

We begin with a brief overview of kernel smoothing es-
timation. Essentially, it estimates the output at a point x
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by taking the weighted average of nearby observed data
points. The Nadaraya-Waston (NW) kernel smoothing esti-
mator (Audibert & Tsybakov, 2007; Devroye et al., 2013).
for a given point x using the Dpoi is given by:

f poi(x) =

∑
(X,Y )∈Dpoi K(x−X

hn
) · Y∑

(X,Y )∈Dpoi K(x−X
hn

)
,

where K(u) = 1{∥u∥ ≤ 1} is the box kernel and hn > 0
is the bandwidth. The bandwidth hn regulates the level of
smoothing applied. For instance, a larger bandwidth leads to
the inclusion of more data points from the vicinity, yielding
a more averaged prediction. Additionally, we follow the
conventions to define 0/0 = 0.

Kernel smoothing estimation admits effective backdoor at-
tacks. Intuitively speaking, from the expressions above,
kernel smoothing estimation relies only on labels of nearby
points in making predictions. Thus, when the backdoor
data is positioned far from the clean data, the predictions
for typical clean data points will largely remain unchanged
between f cl and f poi. Similarly, in the region of typical
backdoor data, the function f poi is likely to output 0 (as
per definition) as it is substantially distant from clean data,
thereby achieving both aims of the backdoor attack.

The following results quantify the above intuition. For il-
lustrating purposes, we assume that the conditional distribu-
tions of X|Y = 0 and X|Y = 1 are d-dimensional normal
distributions with parameters (µ0,Σ) and (µ1,Σ), respec-
tively, where µ1 + µ0 = 0 and Σ is a diagonal matrix with
diagonal elements λd−1 ≥ . . . ≥ λ0 > 0. It is worth noting
that these results can be extended to other distributions with
well-behaved tails, such as exponential distributions. We
provide a simplified statement as follows. Detailed results
and proofs are included in Appendix A.

Theorem 3.1 (Effectiveness of backdoor attacks with kernel
smoothing). Suppose that the loss function is Lipschitz.
Given any sufficiently large ∥η∥, with appropriate selections
of the bandwidth hn, we have

Rcl
n ≤ O(exp (−C1∥η∥2/λd−1) + αpoi exp (−∥η∥2/λ0)),

and

Rbd
n ≤ O(exp (−C2∥η∥2/λd−1) + α−1

poi exp (−∥η∥2/λ0)),

where αpoi ∈ (0, 1) is the backdoor poisoning rate, and
C1, C2 are constants of P0 and P1.

We first explain the implications of the result and then pro-
vide a proof sketch. Theorem 3.1 implies that as the size
of the backdoor perturbation η increases, the maximum per-
formance gaps in clean and backdoor test data decreases.
That is, the backdoor attack will be more successful as
the poisoned data is positioned farther away. With a suf-
ficiently large perturbation, the attacker can expect f poi to

provide near-perfect prediction performance on both clean
and backdoor data, compared to their counterparts f cl and
f pbd. The above results also depend on the poisoning rate
αpoi = nbd/n1. For instance, a larger value of αpoi leads to
a smaller upper bound for Rcl

n. This makes sense because a
small number of backdoor samples compared to the size of
clean data may not significantly impact the predictions. On
the other hand, a smaller αpoi results in a larger upper bound
for Rbd, indicating that f poi is far from f pbd on average.

Overview of Proof. We outline the proof for Rcl
n, and the

same reasoning can be used for Rbd
n . The key idea is that

the kernel smoothing estimation relies on neighbor data
points. We partition the input space Rd into two subregions:
a region Cr around the mean of the test distribution PX

with radius r > 0 and its complement. The gap in the
region Rd \Cr is controlled by the probability of clean data
falling into this region, which decreases quickly under the
assumption that the tail of PX is well-behaved. Determining
the gap over Cr requires further reasoning. We show that
the predicted value’s change within this region is inversely
related to its distance to the backdoor distribution. For
narrative clarity, we use Diffx(f cl, f poi) ≜ Epoi|f cl(x) −
f poi(x)| to track the difference between outputs of f cl/f pbd

and f poi at x.

Lemma 3.2 (Change in predicted values inversely related
to distance). We follow the same setup in Theorem 3.1. For
any given r, s > 0, denote Cr = {x ∈ Rd | ∥x∥ ≤ r}
and Bs,η = {x ∈ Rd | ∥x − µ1 − η∥ ≤ s} to be two sets
representing the typical data from the clean and backdoor
distribution, respectively. For each x ∈ Cr, we have

Diffx(f
cl, f poi) ≤ O(

exp (−d(x,Pη
1))

exp (−d(x,Pη
1)) + (α−1

poi − 1)Tµ1,r

),

where d(x,Pη
1) ≜ (x − µ1 − η)⊤Σ−1(x − µ1 − η) and

Tµ1,r = exp (−2(r2 + ∥µ1∥2)/λ0), and for each x ∈
Bs,η ,

Diffx(f
pbd, f poi) ≤ O(

exp(−d(x,P1))

exp(−d(x,P1)) + αpoiQs
),

where d(x,P1) ≜ (x − µ1)
⊤Σ−1(x − µ1) and Qs =

exp (−∥s∥2/λ0).

We interpret the result from the perspective of clean data,
but similar arguments apply to the perspective of backdoor
data. Specifically, we observe that for each point in x ∈ Cr,
the change between f cl and f poi decrease as its Mahalanobis
distance (Mahalanobis, 1936) d(x,Pη

1) increases. We take
the expectation of Epoi to ensure that this property holds
for the majority of replications on the training data, thereby
eliminating the possibility of this being an exceptional case
due to a specific realization of the training data Dpoi.
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Remark 3.3 (Effective Directions for Backdoor Triggers).
For a given point x ∈ Cr, the larger Mahalanobis distance
d(x,Pη

1) = (x − η)⊤Σ−1(x − η) (assuming µ1 = 0), the
smaller the difference between between the outputs of f cl(x)
and f poi(x). Given the magnitude of the backdoor trigger,
∥η∥, it can be observed that η concentrated on the direction
of P1 with the lowest variance will maximize the Maha-
lanobis distance d(x,Pη

1). In other words, given a fixed
magnitude of ∥η∥, the most effective way to add a backdoor
trigger is in the dimension of data with low variances.

4. The Adaptability Hypothesis
Inspired by the theoretical insights from Theorem 3.1, we
propose the Adaptability hypothesis for DNNs in this sec-
tion. Recall that the efficacy of kernel smoothing backdoor
attacks relies on the backdoor data being sufficiently distant
so that the updated prediction functions’ outputs are similar
to the pre-update outputs.

The Adaptability Hypothesis. In a successful backdoor
attack, if we update a DNN f cl that has been trained on a
dataset Dcl to f poi with a backdoor dataset Dbd

η , then the
difference in the predictions between f cl and the updated
model f poi at a typical point x from the distribution of Dcl

should be small if x is relative ‘far’ from Dbd
η , and substan-

tial if x is located ‘close’ to Dbd
η .

Characterization the distance from a point to a distribu-
tion. The concept of ‘far’ and ‘close’ should be measured
in appropriate metrics, because the classical Euclidean dis-
tance may not be meaningful for images, voice, and text
data. For example, previous research has shown that human-
imperceptible backdoor triggers can achieve similar levels
of test accuracy on both clean and backdoor data as com-
pared to visible triggers, such as a square patch. This can
be explained by the fact that human-imperceptible triggers
may have smaller magnitudes in terms of Euclidean distance
when compared to visible triggers, but they may have simi-
lar or even larger distances in terms of the distance metric
defined on the distribution of data. To account for this, we
need to consider distance measurements that take the data
distribution into account, such as the Mahalanobis distance
in Lemma 3.2, which scales the Euclidean distance based on
the covariance of the data. Using the Mahalanobis distance
allows for a small trigger, when measured in Euclidean dis-
tance, to significantly alter the point’s position in relation
to the probability mass of the data, making the backdoor
data distinct from the clean data, as illustrated in Figure 2,
increasing the chances of a successful backdoor attack.

When and how does a DNN backdoor attack work? From
the above discussion, an effective backdoor trigger alters an
original input to create a backdoor version, where the Eu-
clidean distance between them is small, but the probability

Backdoored data
outside of clean data distribution

Clean data distribution

Backdoored data
inside of clean data distribution

Figure 2. Illustration of the concept of proper distance measure-
ment. A tiny trigger can push the input far away from its original
probability mass. Thus, an effective backdoor should cause large
changes in those input dimensions whose original variances are
small.

distance between their distributions is generally large. This
ensures that retraining the model with backdoor samples
and its associated backdoor labels will not significantly af-
fect its performance on the original data while learning the
artificially created relationship between the backdoor data
and attacker-specified labels, thus achieving the dual goals
of a backdoor attack.

Quantification of the Adaptability Hypothesis We first
introduce a concept to quantify the Adaptability hypothesis.
We then provide a general result on the effectiveness of a
backdoor attack using this proposed concept.

Definition 4.1 (Adaptability). Let Dcl and Dbd
η to be a set

of clean and backdoor data with distributions PX , Pη
1 of

mean parameters µX , µη
1 respectively. Let r, s > 0 be any

fixed numbers and denote Cr = {x ∈ Rd | ∥X − µX∥ ≤
r for r > 0} and Bs,η = {x ∈ Rd | ∥X − µη

1∥ ≤ s for s >
0}. The learning procedure A is said to have (g, h, d)-
Adaptability with respect to Dpoi ≜ Dcl ∪ Dbd

η and a pair
of positive values (r, s), if there exists two monotonically
decreasing functions, g, h : R+ → R+, and a distance
measurement d(q, P ) of a point q to a distribution P taking
values in [0,∞], such that,

1. for all x ∈ Cr, Epoi|f cl(x)− f poi(x)| ≤ g(d(x,Pη
1)),

2. for all x ∈ Bs,η, Epoi|f pbd(x) − f poi(x)| ≤
h(d(x,P1)),

where the expectation Epoi is taken with respect to Dpoi, and
P1 is the distribution of X|Y = 1.

Theorem 4.2 (The effectiveness of a backdoor attack). Con-
sider the threat model discussed in Section 2. Suppose that
the loss function is Lipschitz and the learning procedure
A satisfies adaptability with respect to Dpoi and a pair of
value (r, s), then we have

Rcl
n ≤ LKPX(Rd \ Cr) + LK max

u∈Cr

g(d(u,Pη
1)),

and

Rbd
n ≤ LKPη

1(R
d \Bs,η) + LK max

u∈Bs,η

h(d(u,P1)).
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Example 1 (Kernel Smoothing with d−dimensional Gaus-
sian). Following the same setup in Section 3. We have

d(x,Pη
1) = (x− µ1 − η)⊤Σ−1(x− µ1 − η),

and

g(x) =
exp (−x) + C3

exp (−x) + C3 + C4
,

where C3, C4 are constants of nbd, hn and P1. By setting
(r, s) = (∥η∥/4, ∥η∥/4), we recover the results in Theo-
rem 3.1.

In general, we would expect that the learning procedure A
is adaptable enough to handle both sufficiently large r and s,
resulting in a small summation in the upper bound. In terms
of the distance measurement, one should select appropriate
distance metric for different tasks. Additionally, in practice,
we can specify g and h using a particular parametric form,
such as exponential functions, and determine the parameters
through empirical fitting.

5. Experiments for validating the Adaptability
Hypothesis

This section provides empirical studies to validate the pro-
posed Adaptability hypothesis. We begin by introducing the
experimental setting.

Datasets & Models We use 3 popular datasets: MNIST (Le-
Cun & Cortes, 2010), CIFAR10 (Krizhevsky et al., 2009),
and GTSRB (Stallkamp et al., 2012). We include the re-
sults for (1) MNIST with LetNet (LeCun et al., 2015),
ResNet (He et al., 2016), (2) CIFAR10 with ResNet,
VGG (Simonyan & Zisserman, 2014) in the main text, and
defer the rest to the appendix. The detailed configurations,
including model structure, training schedule, and tuning
hyperparameters, are included in Appendix D.

Backdoor Data Generation The designated target label
for the backdoor is set to 0 and a random class of images,
known as the source class, with the exception of class 0,
is chosen to incorporate backdoor triggers. For example,
images from class 2 are chosen for adding backdoor triggers
in Figure 3(a). Backdoor triggers are square patches, placed
in the lower-right corner of the images, as demonstrated in
the SOTA BadNets attacks (Gu et al., 2017). The default
value for each pixel of the square patches is set to 255. We
provide an ablation study on validating the Adaptability
hypothesis with different source classes in Appendix E.

How to calculate the distances for images? A common
way to assess the distance or similarity between images is
to use the latent representations of a trained CNN (Chen
et al., 2018; Hayase et al., 2021; Li et al., 2021b). In align-
ment with this method, we calculate all distances using
the representations of the layer before the prediction layers

and use the Mahalanobis distance as the metric throughout
this section. The rationale for this choice is investigated in
Section 5.2.

5.1. Experiments to corroborate the Adaptability
We now present empirical results for assessing the adaptabil-
ity hypothesis on MNIST datasets using LetNet 5/ResNet
9. Similar results are observed on CIFAR10/GTSRB with
ResNet20, and details are included in Appendix E. The em-
pirical examinations on the validity of the adaptability are
conducted under two varying factors: (1) the pixel values
of the backdoor triggers, i.e., square patches, and (2) the
poisoning ratio αpoi.

The Adaptability under backdoor triggers with different
pixel values. In Figure 3(a) (with source class 2) and 3(b)
(with source class 4), the x−axis value of each point repre-
sents the Mahalanobis distance of one clean data point z to
the backdoor distribution, and the y−axis value represents
the absolute change in the predicted probability between
f cl and f poi for that clean data point’s ground-truth class,
namely |f cl(z) − f poi(z)|. In each figure, as the distance
from a point to the backdoor distribution increase, the corre-
sponding change in absolute value between f cl and f poi de-
creases, supporting the Adaptability hypothesis. Moreover,
as the pixel values of the backdoor triggers increase, we
observe that the average change f cl and f poi also decreases,
which aligns with our theoretical intuitions in Theorem 3.1.

The Adaptability under different poisoning ratios αpoi.
We fixed the pixel values of backdoor triggers and varied
the poisoning ratios in our experiments, with results in Fig-
ures 10 and 12 in Appendix E. We found that the change
in predicted values decreases as the distance to the back-
door distribution increases and that the average change in
predicted values increases as the poisoning ratio increases,
consistent with our theory.

5.2. Is the Mahalanobis distance reasonable?
Empirical results are presented to support the suitability
of the Mahalanobis distance as a metric for backdoor at-
tacks in CNNs. In light of the Adaptability hypothesis and
Lemma 3.2, an effective backdoor trigger should aim to max-
imize the Mahalanobis distance between clean and backdoor
data, or in other words, it should be added in dimensions
with low variances.

To verify the above point, we consider three poisoning state-
of-the-art attacks: (1) BadNets (Gu et al., 2017), which adds
a patch at the lower-right corner of the clean images, (2)
Adaptive Blend (Qi et al., 2022) (abbreviated as Ada-B),
which embeds a portion of hello kitty into the clean im-
ages, and (3) Ad K-triggers (Qi et al., 2022) (abbreviated as
Ada-K), which adds adaptive patches into the clean images.
An example of clean images and their associated backdoor
version is illustrated in Figure 9 in the appendix. We plot
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(i) LeNet, Pixel Value: 1 (ii) LeNet, Pixel Value: 15 (iii) LeNet, Pixel Value: 30

(i) ResNet, Pixel Value: 1 (ii) ResNet, Pixel Value: 2 (iii) ResNet, Pixel Value: 3
(a) 

(b) 

Figure 3. Figures (a) and (b) demonstrate the Adaptability Hypothesis on the MNIST dataset using LeNet and ResNet respectively. A
subset of original images labeled as 2 in Figure (a) and 7 in Figure (b) is altered by adding a patch and re-labeled as 0. A pre-trained
LeNet/ResNet is then fine-tuned using these manipulated images. The distance between the clean training data points (labeled as 0 and 2
for LeNet, and 0 and 7 for ResNet) and the backdoor data distribution, as well as the change in predicted values for the clean training data
before and after fine-tuning the LeNet/ResNet, are plotted. The results show that for data points that are close to the backdoor distribution,
the changes in their predicted values are significant, while changes in predicted values are small for data points that are far from the
backdoor distribution. These observations support the proposed Adaptability Hypothesis.

the relative change, i.e., dimensional Mahalanbois distance,
between clean data and backdoor data in Figure 4 for three
attacks, where each point’s x−axis value is the variance of
the i-th dimension of backdoor data Dbd

η , and the y−axis
is the relative change along this dimension given by the
absolute difference between clean and backdoor data at the
i-th divided by the standard deviation of i-th dimension. We
observe that for Ada-B and Ada-K attacks under CIFAR10
with ResNet 20, the relative distance tends to be greater on
dimensions of data with small variance, which aligns with
our theoretical results and also confirms the effectiveness of
Ada-B and Ada-K attacks. More experimental results with
different poisoning ratios and different model architectures
are included in Section F, H in the appendix.

6. Implications of the Adaptability Hypothesis
We provide implications of the Adaptability of designing
new effective backdoor attacks and defenses. In short, it
is important to carefully choose a metric when measuring
the similarity or distance between clean and backdoor data,
such as incorporating the data distribution.

Effective methods for visually separating backdoor data
Our theory suggests a novel data representation that en-

ables distinct visual distinctions between clean and back-
door data when viewed through techniques like PCA and
TSNE, whereas such distinctions are not apparent in the
original space. This separation, made possible by our new
metric, could potentially inform new defense mechanisms.

To start, we will briefly examine the importance of visu-
ally distinguishing between clean and backdoor data in de-
fending against backdoor attacks, before delving into the
specifics of our proposed method. In recent times, defense
mechanisms have gained popularity as a means to protect
learning models (Li et al., 2020). This has led to the devel-
opment of sophisticated attacks (triggers) that can bypass
standard defense methods. For example, (Qi et al., 2022)
aims to design triggers that result in indistinguishable latent
representations of CNNs between clean and backdoor data,
thereby circumventing defenses (Chen et al., 2018; Tran
et al., 2018) that rely on visually distinguishing between
clean and backdoor data and filtering out the latter. The
effectiveness of the triggers proposed in (Qi et al., 2022) is
visually demonstrated in Figure 5(a) and Figure 6(a). For in-
stance, in Figure 5(a), we apply PCA to visualize the latent
space of a ResNet 20 model trained on CIFAR10 for three
different attacks, and it can be observed that the latent rep-



Understanding Backdoor Attacks through the Adaptability Hypothesis

0.05

BadNets Ada-B Ada-K

(a) (c) (b) 

Figure 4. Illustrations of dimensional Mahalanbois distance for three attacks on CIFAR10 and ResNet 20. In each figure, each point’s
horizontal value represents the standard deviation (std) of one dimension of backdoor data, i.e., the standard deviation of the jth dimension
of data, and its vertical value is the relative change along the same dimension, i.e., the difference (in absolute value) between clean and
backdoor data along the jth dimension divided by the std of the jth dimension. We observed that for Ada-K and Ada-B attacks, they tend
to have a larger (smaller) relative distance on the dimension of data with lower (higher) std, consistent with our theory.

BadNets Ada-B Ada-K

(a) 

(b) 

pca

Figure 5. PCA visualizations of (a) the original and (b) transformed
latent spaces of ResNet20 trained on CIFAR10 with αpoi = 0.5%
for three SOTA attacks. The latent spaces of Ada-B and Ada-K
attacks do not exhibit a clear separation of clusters in their original
form, suggesting the relative effectiveness of Ada-B/K compared
with the BadNets. However, our theoretical results demonstrate
that a transformed version of these spaces does display two distinct
and separate clusters, as shown in (b).

BadNets Ada-B Ada-K

(a) 

(b) 

Figure 6. TSNE visualizations of (a) the original and (b) trans-
formed latent spaces of ResNet 20 on trained CIFAR10 with
αpoi = 0.5% for three SOTA Attacks. Our proposed transfor-
mation separates clusters in the latent spaces of Ada-K attack,
which were not separated in their original form.

resentations for Ada-K/B attacks do not form two separate
clusters, unlike the well-separated clusters for BadNets.

However, our results suggest that one possible reason for
the visual indistinguishability could be that both PCA and
TSNE operate on the original latent spaces of CNNs, with-
out considering their distributions. To address this, we
propose a method for visualizing the latent spaces of CNNs
that first calculates the Mahalanobis distance of each data
point to each class-specific distribution and then combines
these distances to form a new representation, (see Algo-
rithm 1 in Appendix G for details). The reasoning behind
this transformation is illustrated in Figure 2, where the red
triangle, which likely belongs to a different distribution,
has a much greater Mahalanobis distance to the distribution
(with a blue dashed circle) than the points within the dashed
circle. By applying the aforementioned transformations, we
demonstrate the ability to distinguish between clean and
potentially backdoor data, as illustrated in Figure 5 and 6.
The separation of clean and backdoor data allows for the
identification and filtering of backdoor attacks, reducing the
potential threat of such attacks. A potential limitation of this
method as a defense strategy is the requirement of access to
a small subset of both clean and backdoor data.

7. Conclusion
In this study, we studied the theoretical aspects of back-
door attacks. We first examine backdoor attacks in the
context of classical machine learning and propose a hy-
pothesis to explain their effectiveness in general learning
models. Experiments are conducted to validate the hypoth-
esis and implications for future defenses, and attacks are
discussed. There are several potential areas for future re-
search. These include deriving theoretical results for other
types of machine learning models, such as feed-forward
neural networks, and conducting experiments on different
data forms, including text and voice data.

The appendix includes restatements and proofs of theoretical
results and additional experimental results.
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Appendix for Understanding Backdoor Attacks through the Adaptability
Hypothesis

The appendix includes restatements and proofs of the main results in Section A. In Section B, proofs for technical lemmas
that were not previously included are provided. Section C lists all omitted technical lemmas that were informally referred to
earlier. The configurations for the experiments are listed in Section D. Additional experiments to validate the hypothesis and
theoretical justifications can be found in Section E and F. The pseudo-code for the visualization algorithms and additional
experiments are included in Section G.

A. Missing Proof
In this section, we will formally state our theoretical results and provide proof.

Notations: We denote P1 and P0 to be the class-conditional distributions of X|Y = 1 and X|Y = 0, with mean parameter
µ1, µ0 respectively. Without loss of generality, we assume that µ0 + µ1 = 0. For any given r, s > 0 and η ∈ Rd, denote
Cr = {x ∈ Rd | ∥x− (µ1 + µ0)∥ ≤ r} and Bs,η = {x ∈ Rd | ∥x− (µ1 + η)∥ ≤ s} to be two sets representing the typical
data from the clean and backdoor distribution, respectively. We denote Bc,r = {x ∈ Rd | ∥x − c∥ ≤ r} to be the ball
centered at the point c with a radius r > 0, and Vd(r) to be the volume of a ball with radius r > 0 in Rd.

Before restating and proving the main results, we first list some technical assumptions and introduce useful lemmas.

A.1. General Assumptions.

Assumption 1. For a given poisoned dataset Dpoi, the bandwidth hn is set to the order of n−1/(2k+d), where n and d are
the sample size and dimension of Dpoi, and k is a parameter associated with the data generating distribution PX,Y .
Remark A.1. The bandwidth parameter signifies a trade-off between the variance and bias of the predicted generalization
error. An increase in bandwidth will result in a kernel smoothing method with higher variance and lower bias. The
selection of bandwidth, in this case, strikes a balance between bias and variance, resulting in f cl having an optimal expected
generalization error under distribution PX .

Assumption 2. The loss function is Lipschitz, namely, for every K > 0 there exists a constant LK > 0 such that

|ℓ (w1, y)− ℓ (w2, y)| ≤ LK |w1 − w2|

for all w1, w2 ∈ [−K,K] and for all y ∈ {0, 1}.
Remark A.2. Several loss functions are frequently utilized for classification tasks that satisfy the above assumption,
e.g., (1) the square loss ℓ(w, y) = (w − y)2 with LK = 2K + 2, (2) the logistic loss ℓ(w, y) = ln (1 + e−wy) with
LK = eK/

(
1 + eK

)
≤ 1.

A.2. Useful technical preliminary results

The following result quantifies the change between f cl and f poi for the class-conditional distribution P1 being a general
distribution. The results in the main text can easily be obtained from the below result by specifying P1 to be a multi-variate
normal distribution.

Lemma A.3 (Kernel smoothing estimation under general distributions P1). Following the threat model described in
Section 2, we consider using kernel smoothing as the learning procedure. Given any η ∈ Rd and n > 0, by setting
hn < 0.5∥η∥, we have for each x ∈ Rd,

Epoi|f cl(x)− f poi(x)| ≤ 1− (n1/nbd − 1)P1(Bx,hn)

(n1/nbd − 1)P1(Bx,hn
) + P1(Bx−η,hn

) + 1/nbd
, (1)

and for each x ∈ Rd,

Epoi|f pbd − f poi(x)| ≤ 1− P1(Bx−η,hn
)

n1/nbdP1(Bx,hn) + P1(Bx−η,hn) + 1/nbd
. (2)
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A.3. Refined version of Lemma 3.2

In this section, we provide a refined statement of Lemma 3.2. The restatement and proof of Lemma 3.2 are included in the
section subsection.

We make the following two assumptions regarding (1) the underlying data distributions and (2) the corresponding backdoor
triggers based on the assumed data distributions.

Assumption 3. The class-conditional distributions of X|Y = 0 and X|Y = 1 are d-dimensional normal distributions
with parameters (µ0,Σ) and (µ1,Σ), respectively, where µ1 + µ0 = 0 and Σ is a diagonal matrix with diagonal elements
λd−1 ≥ . . . ≥ λ0 > 0.

Assumption 4. The backdoor trigger η satisfies ∥η∥ > 2hn, min(∥η + µ1∥, ∥η + µ0∥) > 7/8∥η∥, ∥η∥/4 >
max(∥µ1∥, ∥µ0∥), and 0.5∥η∥ >

√
∥η∥.

Lemma A.4 (Refined Statements of Lemma 3.2). Following the threat model described in Section 2, we consider using
kernel smoothing as the learning procedure. With Assumptions 1, 2, and 3, we have, for each x ∈ Cr,

lim
n→∞

Epoi|f cl(x)− f poi(x)| ≤ exp (−d(x,Pη
1)/2)

exp (−d(x,Pη
1)/2) + (α−1

poi − 1) exp(−d(x,P1)/2)
, (3)

where d(x,Pη
1) ≜ (x− µ1 − η)⊤Σ−1(x− µ1 − η) and for each x ∈ Bs,η ,

lim
n→∞

Epoi|f pbd − f poi(x)| ≤ exp(−d(x,P1)/2)

exp(−d(x,P1)/2) + αpoi exp(−d(x,Pη
1)/2)

, (4)

where d(x,P1) ≜ (x− µ1)
⊤Σ−1(x− µ1) and recall f pbd(x) = 0 for all x ∈ Rd.

Proof. To prove the results, we invoke the above two Lemma A.3, for any n > 0, for each x ∈ Cr, we have

Epoi|f cl(x)− f poi(x)| ≤ P1(Bx−η,hn
) + 1/nbd

(n1/nbd − 1)P1(Bx,hn) + P1(Bx−η,hn) + 1/nbd

≤
maxz∈Bx,hn

exp (−d(z,Pη
1)/2) + (2π)d/2

√
|Σ|/(nbdVd(hn))

(α−1
poi − 1)minz∈Bx,hn

exp (−d(z,P1)/2) + maxz∈Bx,hn
exp (−d(z,Pη

1)/2) + (2π)d/2
√

|Σ|/(nbdVd(hn))
,

where αpoi = nbd/n1 is the ratio of backdoor sample size.

In particular, we have

lim
n→∞

Epoi|f cl(x)− f poi(x)| ≤ exp (−d(x,Pη
1)/2)

(α−1
poi − 1) exp (−d(x,P1)/2) + exp (−d(x,Pη

1)/2)
,

since nbdVd(hn) is of the order n1−d/(d+4) = n4/(d+4) which goes to ∞ from the Assumption 1.

Similarly, for any n > 0, for each x ∈ Bs,η , we have

Epoi|0− f poi(x)| ≤ 1− nbdP1(Bx−η,hn)

n1P1(Bx,hn
) + nbdP1(Bx−η,hn

) + 1
,

≤
α−1

poi maxz∈Bx,hn
exp (−d(z,P1)/2) + (2π)d/2

√
|Σ|/(nbdVd(hn))

α−1
poi maxz∈Bx,hn

exp (−d(z,P1)/2) + minz∈Bx,hn
exp (−d(z,Pη

1)/2) + (2π)d/2
√
|Σ|/(nbdVd(hn))

.

In particular, we have

lim
n→∞

Epoi|0− f poi(x)| ≤ exp (−d(x,P1)/2)

exp (−d(x,P1)/2) + αpoi exp (−d(x,P1)/2)
.
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A.4. Proof of Lemma 3.2

Lemma A.5 (Restatements of Lemma 3.2). Following the threat model described in Section 2, we consider using kernel
smoothing as the learning procedure. With Assumptions 1, 2, and 3, we have, for each x ∈ Cr,

lim
n→∞

Epoi|f cl(x)− f poi(x)| ≤ exp (−d(x,Pη
1)/2)

exp (−d(x,Pη
1)/2) + (α−1

poi − 1) exp (−(r2 + ∥µ1∥2)/λ0)
, (5)

where d(x,Pη
1) ≜ (x− µ1 − η)⊤Σ−1(x− µ1 − η) and for each x ∈ Bs,η ,

lim
n→∞

Epoi|0− f poi(x)| ≤ exp(−d(x,P1)/2)

exp(−d(x,P1)/2) + αpoi exp (−∥s∥2/2λ0)
, (6)

where d(x,P1) ≜ (x− µ1)
⊤Σ−1(x− µ1).

Proof. The proof is directly from combining the Lemma A.4 and the following result.

Lemma A.6 (Probability of Gaussian Balls). Let P1 a d−dimensional normal distribution with the diagonal covariance
matrix Σ with diagonal elements λd−1 ≥ λd−1 ≥ . . . ≥ λ0 > 0. For any x ∈ Cr, we have:

• P1(Bx,hn
) ≥ Vd(hn)

(2π)d/2
√

|Σ|
exp (−((r + hn)

2 + ∥µ1∥2)/λ0),

• P1(Bx−η,hn
) ≤ Vd(hn)

(2π)d/2
√

|Σ|
maxz∈Bx,hn

exp (−d(z,Pη
1)/2).

For any x ∈ Bs,η , we have:

• P1(Bx−η,hn
) ≥ Vd(hn)

(2π)d/2
√

|Σ|
exp (−(∥s∥+ hn)

2/2λ0),

• P1(Bx,hn
) ≤ Vd(hn)

(2π)d/2
√

|Σ|
maxz∈Bx,hn

exp (−d(z,P1)/2).

The proof of the above two Lemmas is included in Section B.1 and B.2, respectively.

A.5. Proof of Theorem 3.1

Theorem A.7 (Restatement of Theorem 3.1). Following the threat model described in Section 2, we consider using kernel
smoothing as the learning procedure. Under Assumptions 1, 2, 3, and 4, as n → ∞, we have

Rcl
n ≤ O(exp (−C1∥η∥2/λd−1) + αpoi exp (−∥η∥2/λ0)),

and
Rbd

n ≤ O(exp (−C2∥η∥2/λd−1) + α−1
poi exp (−∥η∥2/λ0)),

where αpoi is the backdoor poisoning rate, and C1, C2 are some constants P1 and P0.

Proof. In the following, we provide detailed proof of the gap in the clean test error, i.e., Rcl
n. The proof of the gap in the

backdoor test error follows similar reasoning, and thus the details are omitted. As n → ∞, we have

Rcl
n = EpoiE(X,Y )∼PXY

[ℓ(f poi(X), Y )− ℓ(f cl(X), Y )]

≤ EpoiEX∼PXLK |f poi(X)− f cl(X)| (7)

= EX∼PXEpoiLK |f poi(X)− f cl(X)| (8)

= EX∼PXEpoiLK |f poi(X)− f cl(X)|1{X /∈ Cr}
+ EX∼PXEpoiLK |f poi(X)− f cl(X)|1{X ∈ Cr}
≤ LKPX(Rd \ Cr) + LKEX∼PX max

X∈Cr

(Epoi|f poi(X)− f cl(X)|)1{X ∈ Cr}
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≤ LKPX(Rd \ Cr) +O(max
X∈Cr

LK exp (−d(X,Pη
1)/2)

(α−1
poi − 1) exp (−d(X,P1)/2) + exp (−d(X,Pη

1)/2)
) (9)

= LKPX(Rd \ Cr) +O(max
X∈Cr

LK

(α−1
poi − 1) exp ((η⊤Σ−1η − η⊤Σ−1(x− µ1))/2) + 1

)

≤ LKPX(Rd \ Cr) +O(
LK

(α−1
poi − 1) exp (η⊤Σ−1η/16) + 1

) (10)

= O(exp (−∥η∥2/320λd−1) + αpoi exp (−η⊤Σ−1η/16)), (11)

where the inequality (7) is from the assumption on the Lipschitz condition, the equality (8) is by Fubini’s Theorem,
and the inequality in (9) is from Lemma A.4. Additionally, the inequality in (10) holds from Assumption 2 (length of
∥η∥) and the definition of Cr with r = ∥η∥/4, and (11) follows from the standard concentration inequalities of Chi-
square random variables, and the fact that 1/(x + 1) ≤ 1/x, for x > 0. To minimize the upper bound in (11), we
choose effective directions for η given |η| by placing all the weight of η on the direction of λ0, which leads to the result
O(exp (−∥η∥2/320λd−1) + αpoi exp (−∥η∥2/(16λ0))).

A.6. Proof of Theorem 4.2

Proof. The proof for this result follows the same arguments in Theorem 3.1. Similarly, we provide proof of the gap in the
clean test error, i.e., Rcl

n. The proof of the gap in the backdoor test error follows similar reasoning, and thus the details are
omitted.

Rcl
n = EpoiE(X,Y )∼PXY

[ℓ(f poi(X), Y )− ℓ(f cl(X), Y )]

≤ EpoiE(X,Y )∼PXY
[|ℓ(f poi(X), Y )− ℓ(f cl(X), Y )|]

≤ EpoiEX∼PXLK |f poi(X)− f cl(X)| (12)

= EX∼PXEpoiLK |f poi(X)− f cl(X)| (13)

= EX∼PXEpoiLK |f poi(X)− f cl(X)|1{X /∈ Cr}
+ EX∼PXEpoiLK |f poi(X)− f cl(X)|1{X ∈ Cr}
≤ LKPX(Rd \ Cr) + LKEX∼PXg(d(X,Pη

1))1{X ∈ Cr} (14)

≤ LKPX(Rd \ Cr) + LK max
u∈Cr

g(d(u,Pη
1))PX(Cr),

where the inequality (12) is from the assumption on the lipschitz condition, the equality (13) is by Fubini’s Theorem, and
the inequality (14) is from the definition of adaptability.

B. Proofs of Lemmas
B.1. Proof of Lemma A.3

Proof. In this proof, we demonstrate the use of kernel smoothing with general distributions.

Proof for Gap between f cl and fpoi. For the ease of narrative, we decompose the clean training data set Dcl into D0, D1,cl,
and D1,bd. D0 is the clean training data with ground-truth label 0, D1,cl is the clean training data with label 1 and not being
backdoored by attackers, and D1,bd is the clean training data with label 1 and backdoored by attackers. The following results
provide an upper bound on the absolute change between f cl and f poi by only involving data samples with original labels of
one. We include the proof of Lemma B.1 and Lemma B.2 in Section B.3 and Section B.4, respectively.

Lemma B.1. For any given poisoned dataset Dpoi, we have

|f cl(x)− f poi(x)| ≤
∑

X∈D1,bd K(x−X−η
hn

)∑
X∈D1,cl K(x−X

hn
) +

∑
X∈D1,bd K(x−X−η

hn
)
,

for all x ∈ Rd.
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Lemma B.2. For any c > 0, we have

Epoi

∑
X∈D1,cl K(x−X

hn
)∑

X∈D1,cl K(x−X
hn

) + c
≥ (n1 − nbd)P1(Bx,hn

)

(n1 − nbd)P1(Bx,hn
) + c+ 1

.

Back to the main proof, for any given Dpoi, invoking Lemma B.1, we have

Epoi|f cl(x)− f poi(x)|

≤ Epoi

∑
X∈D1,bd K(x−X−η

hn
)∑

X∈D1,cl K(x−X
hn

) +
∑

X∈D1,bd K(x−X−η
hn

)
,

≤ Epoi nbdP1(Bx−η,hn)∑
X∈D1,cl K(x−X

hn
) + nbdP1(Bx−η,hn)

, (15)

= Epoi1−
∑

X∈D1,cl K(x−X
hn

)∑
X∈D1,cl K(x−X

hn
) + nbdP1(Bx−η,hn)

,

≤ 1− (n1 − nbd)P1(Bx,hn)

(n1 − nbd)P1(Bx,hn
) + nbdP1(Bx−η,hn

) + 1
, (16)

where the inequality in (15) is because of the Jensen’s Inequality and (16) holds from the Lemma B.2.

Proof for Gap between fpoi and fpbd

We need the following lemma, and we include the proof in Section B.5.

Lemma B.3. Given any c > 0, for any x ∈ Rd we have

Epoi

∑
X∈D1,bd K(x−X−η

hn
)

c+
∑

X∈D1,bd K(x−X
hn

) +
∑

X∈D1,bd K(x−X−η
hn

)
≥ nbdP1(Bx−η,hn

)

(nbd)(P1(Bx,hn) + P1(Bx−η,hn)) + c+ 1
.

Invoking the above result, we have:

Epoi|0− f poi(x)|

= Epoi

∑
X∈D0 K(x−X

hn
) · 0 +

∑
X∈D1,cl K(x−X

hn
) · 1 +

∑
X∈D1,bd K(x−X

hn
) · 1∑

X∈D0 K(x−X
hn

) +
∑

X∈D1,cl K(x−X
hn

) +
∑

X∈D1,bd [K(x−X
hn

) +K(x−X−η
hn

)]
,

≤ Epoi

∑
X∈D1,cl K(x−X

hn
) +

∑
X∈D1,bd K(x−X

hn
)∑

X∈D1,cl K(x−X
hn

) +
∑

X∈D1,bd [K(x−X
hn

) +K(x−X−η
hn

)]
,

= 1− Epoi

∑
X∈D1,bd K(x−X−η

hn
)∑

X∈D1,cl K(x−X
hn

) +
∑

X∈D1,bd [K(x−X
hn

) +K(x−X−η
hn

)]
,

≤ 1− Epoi

∑
X∈D1,bd K(x−X−η

hn
)

(n1 − nbd)P1(Bx,hn
) +

∑
X∈D1,bd [K(x−X

hn
) +K(x−X−η

hn
)]
, (17)

≤ 1− nbdP1(Bx−η,hn
)

(n1 − nbd)P1(Bx,hn) + (nbd)(P1(Bx,hn) + P1(Bx−η,hn)) + 1
, (18)

≤ 1− nbdP1(Bx−η,hn
)

n1P1(Bx,hn
) + nbdP1(Bx−η,hn

) + 1
,

where the inequality in (17) is because of the Jensen’s inequality, and (18) holds from Lemma B.3.
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B.2. Proof of Lemma A.6

Proof. Recall that Vd(r) denotes the volume of a ball with radius r > 0 in Rd.

For any x ∈ Cr we have

P1(Bx,hn
)

=

∫
Bx,hn

1

(2π)d/2
√

|Σ|
exp (−(t− µ1)

⊤Σ−1(t− µ1)/2)dt

≥ Vd(hn)

(2π)d/2
√

|Σ|
min

z∈Bx,hn

exp (−∥z − µ1∥2/2λ0)

≥ Vd(hn)

(2π)d/2
√

|Σ|
min

z∈Bx,hn

exp (−(∥z∥2 + ∥µ1∥2)/λ0) (19)

≥ Vd(hn)

(2π)d/2
√

|Σ|
exp (−((r + hn)

2 + ∥µ1∥2)/λ0), (20)

where the inequality in (19) is because of the fact that ∥a− b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any a, b ∈ Rd, and the inequality in
(20) holds from the definition of Cr and Bx,hn .

Similarly, for any x ∈ Cr,

P1(Bx−η,hn
)

= Pη
1(Bx,hn

) (21)

=

∫
Bx,hn

1

(2π)d/2
√
|Σ|

exp (−(t− µ1 − η)⊤Σ−1(t− µ1 − η)/2)dt

≤ Vd(hn)

(2π)d/2
√
|Σ|

max
z∈Bx,hn

exp (−d(z,Pη
1)/2)

where the inequality in (21) follows from the fact Pη
1 is shifted by η from P1.

Similarly, for any x ∈ Bs,η ,

P1(Bx−η, hn)

= Pη
1(Bx,hn

)

=

∫
Bx,hn

1

(2π)d/2
√
|Σ|

exp (−(t− µ1 − η)⊤Σ−1(t− µ1 − η)/2)dt

≥ Vd(hn)

(2π)d/2
√
|Σ|

min
z∈Bx,hn

exp (−∥z − µ1 − η∥2/2λ0),

=
Vd(hn)

(2π)d/2
√
|Σ|

exp (−(∥s∥+ hn)
2/2λ0), (22)

where the inequality in (22) is from the definition of Bs,η and the fact that x ∈ Bs,η.

For any x ∈ Bs,η , we have

P1(Bx, hn)

=

∫
Bx,hn

1

(2π)d/2
√

|Σ|
exp (−(t− µ1)

⊤Σ−1(t− µ1)/2)dt

≤ Vd(hn)

(2π)d/2
√

|Σ|
max

z∈Bx,hn

exp (−d(x,P1)/2).
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B.3. Proof of Lemma B.1

Proof. Given any poisoned dataset Dpoi, for all x ∈ Rd, we consider the following two cases: Case (i) If∑
(X,Y )∈Dcl K(x−X

hn
) = 0, by the definitions of Nadaraya-Watson kernel estimate, we can verify that

f cl(x) = f poi(x) = 0.

Case (ii) If
∑

(X,Y )∈Dcl K(x−X
hn

) > 0, we have

f cl(x)− f poi(x)

=

∑
(X,Y )∈Dcl K(x−X

hn
) · Y∑

(X,Y )∈Dcl K(x−X
hn

)
−

∑
(X,Y )∈Dcl K(x−X

hn
) · Y +

∑
X∈Dbd

η
K(x−X

hn
) · 0∑

(X,Y )∈Dcl K(x−X
hn

) +
∑

X∈Dbd
η
K(x−X

hn
)

,

= (
∑

(X,Y )∈Dcl

K(
x−X

hn
) · Y ) ·

∑
X∈Dbd

η
K(x−X

hn
)

(
∑

(X,Y )∈Dcl K(x−X
hn

))(
∑

(X,Y )∈Dcl K(x−X
hn

) +
∑

X∈Dbd
η
K(x−X

hn
))
,

≤ (
∑

(X,Y )∈Dcl

K(
x−X

hn
) · 1) ·

∑
X∈Dbd

η
K(x−X

hn
)

(
∑

(X,Y )∈Dcl K(x−X
hn

))(
∑

(X,Y )∈Dcl K(x−X
hn

) +
∑

X∈Dbd
η
K(x−X

hn
))
,

=

∑
X∈Dbd

η
K(x−X

hn
)∑

(X,Y )∈D0 K(x−X
hn

) +
∑

(X,Y )∈D1 K(x−X
hn

) +
∑

X∈Dbd
η
K(x−X

hn
)
, (23)

≤
∑

X∈D1,bd K(x−X−η
hn

)∑
X∈D1,cl K(x−X

hn
) +

∑
X∈D1,bd K(x−X−η

hn
)
,

where (23) follows the fact that Dcl ≜ D0 ∪ D1.

B.4. Proof of Lemma B.2

Proof.

Epoi

∑
X∈D1,cl K(x−X

hn
)∑

X∈D1,cl K(x−X
hn

) + c
,

=
∑

X∈D1,cl

ED1∼P1

K(x−X
hn

)

c+
∑

X∈D1,cl K(x−X
hn

)
, (24)

= (n1 − nbd)ED1∼P1

K(x−X1

hn
)

c+K(x−X1

hn
) +

∑
X∈D1,cl\X1

K(x−X
hn

)
, (25)

= (n1 − nbd)ED1\X1∼P1
(

0

c+ 0 +
∑

X∈D1,cl\X1
K(x−X

hn
)
)P1(K(

x−X1

hn
) = 0)

+ (n1 − nbd)ED1\X1∼P1
(

1

c+ 1 +
∑

X∈D1,cl\X1
K(x−X

hn
)
)P1(K(

x−X1

hn
) = 1)

= (n1 − nbd)ED1\X1∼P1
(

1

c+ 1 +
∑

X∈D1,cl\X1
K(x−X

hn
)
)P1(K(

x−X1

hn
) = 1),

= (n1 − nbd)EZ∼Bino((n1−nbd−1),P1(Bx,hn ))(
1

Z + c+ 1
)P1(K(

x−X1

hn
) = 1), (26)

≥ (n1 − nbd)P1(Bx,hn
)

(n1 − nbd − 1)P1(Bx,hn) + c+ 1
, (27)

≥ (n1 − nbd)P1(Bx,hn
)

(n1 − nbd)P1(Bx,hn) + c+ 1
,
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where (24) follows the linearity of expectation, and (25) is because D1 consist of i.i.d samples and the symmetric property.
Finally, (26) follows from the fact that

∑
X∈D1

cl\X1
K(x−X

hn
)+ is a binomial random variable with no. of trials (n1−nbd−1)

and the success probability P1(Bx,hn), and the inequality in (27) is due to the Jensen’s inequality.

B.5. Proof of Lemma B.3

Proof.

Epoi

∑
X∈D1,bd K(x−X−η

hn
)

c+
∑

X∈D1,bd K(x−X
hn

) +
∑

X∈D1,bd K(x−X−η
hn

)
,

=
∑

X∈D1,bd

ED1∼P1

K(x−X−η
hn

)

c+
∑

X∈D1,bd K(x−X
hn

) +
∑

X∈D1,bd K(x−X−η
hn

)
, (28)

= nbdED1∼P1

K(x−X1−η
hn

)

c+K(x−X1

hn
) +K(x−X1−η

hn
) +

∑
X∈D1,bd\X1

K(x−X
hn

) +
∑

X∈D1,bd\X1
K(x−X−η

hn
)
, (29)

= nbdED1\X1∼P1
(

0

c+ 0 +
∑

X∈D1,bd\X1
(K(x−X

hn
) +K(x−X−η

hn
))
)P1(K(

x−X1 − η

hn
) = 0,K(

x−X1

hn
) = 0)

+ nbdED1\X1∼P1
(

0

c+ 1 +
∑

X∈D1,bd\X1
(K(x−X

hn
) +K(x−X−η

hn
))
)P1(K(

x−X1 − η

hn
) = 0,K(

x−X1

hn
) = 1)

+ nbdED1\X1∼P1
(

1

c+ 1 +
∑

X∈D1,bd\X1
(K(x−X

hn
) +K(x−X−η

hn
))
)P1(K(

x−X1 − η

hn
) = 1,K(

x−X1

hn
) = 0)

+ nbdED1\X1∼P1
(

1

c+ 2 +
∑

X∈D1,bd\X1
(K(x−X

hn
) +K(x−X−η

hn
))
)P1(K(

x−X1 − η

hn
) = 1,K(

x−X1

hn
) = 1), (30)

= nbdED1\X1∼P1
(

1

c+ 1 +
∑

X∈D1,bd\X1
(K(x−X

hn
) +K(x−X−η

hn
))
)P1(K(

x−X1 − η

hn
) = 1), (31)

= nbdEZ∼Bino(nbd−1,P1(Bx,hn )+P1(Bx−η,hn ))(
1

Z + c+ 1
)P1(K(

x−X1 − η

hn
) = 1), (32)

≥ nbd
1

(nbd − 1)(P1(Bx,hn
) + P1(Bx−η,hn

)) + c+ 1
P1(Bx−η,hn

), (33)

=
nbdP1(Bx−η,hn)

(nbd − 1)(P1(Bx,hn
) + P1(Bx−η,hn

)) + c+ 1
,

where (28) follows the linearity of expectation, and (29) is because D1 consist of i.i.d samples and the symmetric property.
Additionally, the term in (30) equals 0 because the event X1 ∈ Bx−η,hn and X1 ∈ Bx,hn contradict with each other since
2hn < ∥η∥2. Similarly, (31) holds from

P1(K(
x−X1 − η

hn
) = 1,K(

x−X1

hn
) = 0) =

P1(K(
x−X1

hn
) = 0|K(

x−X1 − η

hn
) = 1) · P1(K(

x−X1 − η

hn
) = 1) = P1(K(

x−X1 − η

hn
) = 1).

Finally, (32) follows from the fact that
∑

X∈D1
bd\X1

K(x−X
hn

) + K(x−X−η
hn

) is a binomial random variable with no. of
trials (nbd − 1) and the success probability P1(Bx,hn) + P1(Bx−η,hn), and the inequality in (33) is due to the Jensen’s
inequality.
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C. Omitted Lemmas
C.1. Proof of Example 1

Proof. Recall that η satisfies ∥η + µ1∥ > 7/8∥η∥, ∥η + µ0∥ > 7/8∥η∥, ∥η∥/4 > ∥µ1∥, ∥µ0∥, and 0.5∥η∥ >
√
∥η∥. Also,

we have µ1 + µ0 = 0.

We have

PX(Rd \ Cr)

=PX(∥X∥22 ≥ r2)

=kP0(∥X∥22 ≥ r2) + (1− k)P1(∥X∥22 ≥ r2) (34)

≤kP0(∥X − µ0∥22 ≥ r2/4) + (1− k)P1(∥X − µ1∥22 ≥ r2/4) (35)

≤ exp (−r2/80λd−1), (36)

where the equality in (34) is by assuming that class-conditional conditional distributions are Gaussians with prior k and the
total law of probability. Additionally, the inequality in (35) holds because {x|∥x − µ1∥ ≤ ∥η∥/4} ⊂ {x|∥x∥ ≤ ∥η∥/2}
and {x|∥x− µ0∥ ≤ ∥η∥/4} ⊂ {x|∥x∥ ≤ ∥η∥/2} provided that ∥µ0∥, ∥µ1∥ ≤ ∥η∥/4. Finally the inequality in (36) follows
standard tail inequalities of Chi-square distributions.

D. Experiment configurations
D.1. Computing Environments

All of our experiments are conducted on a workstation with one A100 GPU.

D.2. Data Descriptions

We employed three computer vision datasets of varying complexity, all of which have been utilized in prior research. This
allows for a increased confidence in the validity of the proposed hypothesis.

MNIST: The MNIST dataset comprises of 70, 000 grayscale images with a resolution of 28× 28, divided into a training
set of 60, 000 images and a test set of 10, 000 images. To enhance the performance of the training process, we employed
data augmentation techniques, such as random cropping and rotation. However, during the evaluation stage, no additional
augmentation was applied. Some examples are shown below.

Figure 7. Examples of MNIST

CIFAR10: The CIFAR-10 dataset is one of the most widely used datasets for machine learning research. It contains 60, 000
color images with a resolution of 32 × 32, divided into 10 classes with 6, 000 images per class. The dataset is split into
a training set of 50, 000 images and a test set of 10, 000 images. To enhance the performance of the training process, we
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employed data augmentation techniques, such as random cropping and rotation. However, during the evaluation stage, no
additional augmentation was applied. Some examples are shown below.

Figure 8. Examples of CIFAR10

GTSRB The German Traffic Sign Recognition Benchmark (GTSRB) dataset is gaining popularity in the field of Backdoor
Learning. The dataset comprises of 60, 000 images with 43 classes and varying resolution from 32× 32 to 250× 250. It is
divided into a training set of 39, 209 images and a test set of 12, 630. To enhance the performance of the training process,
we resized to 32× 32 pixels and employed data augmentation techniques, such as random cropping and rotation. However,
during the evaluation stage, no additional augmentation was applied.

D.3. Model Configurations & Training Schedule

We consider 3 representative CNN classifiers, namely LeNet5, ResNet 9/20 and VGG 16, and summarize their usage in
Table 1.

Table 1. Summary of data and models

Dataset Model

MNIST LeNet 5, ResNet 9
CIFAR10 ResNet 20, VGG 16
GTSRB ResNet 20

For ResNet and VGG models, we adopt the standard training pipeline of SGD with a momentum of 0.9, a weight decay of
10−4 , and a batch size of 128 for optimization. For LetNet, we adopt the standard training pipeline of SGD with the initial
learning rate of 0.1/0.01.

D.4. State-of-the-art Backdoor Attacks

Below are examples of three backdoor attacks on CIFAR10.

Original (a) BadNets (b) Ada-B (c) Ada-K

Figure 9. Illustration of an original image from CIFAR10 and its backdoor versions: (a) BadNets, (b) Adaptive Blend, and (c) Adaptive
K-triggers
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E. Additional Experiments for validating the Adaptability Hypothesis
E.1. Experimental Results for testing MNIST with LeNet/ResNet

The Adaptability under different poisoning ratios αpoi. In Figure 10, we observe that the change in predicted values
decreases as the distance to the backdoor distribution increases, and that the average change in predicted values increases as
the poisoning ratio increases, consistent with our theory.

The Adaptability under different source class for backdoor. We set the source class of images to be backdoored to be 4.
Figures 11 and 12 show results on MNIST with LeNet with different backdoor trigger intensity and the poisoning ratio
αpoi. We observe that that as the intensity of the backdoor triggers increases, the average change in predicted probabilities
decreases, consistent with the hypothesis. Also, in each figure, as the distance from a point to the backdoor distribution
increases, its corresponding change in f cl and f poi decreases, align with our results. Additionally, as the ratio increases, the
average change in predicted probability also increases, which conforms to our results.

Picture in the main text

LetNet, Ratio: 0.01, pvalue = 1 LetNet, Ratio: 0.05, pvalue = 1 LetNet, Ratio: 0.1, pvalue = 1

(a) !!"# = 0.01 (b) !!"# = 0.05 (c) !!"# = 0.1

Figure 10. Case studies on BadNets attacks with different backdoor poisoning ratio αpoi, on MNIST and LetNet 5.Pics in the appendix, ratio 0.01

(a) Pixel Value: 1 (b) Pixel Value: 10 (c) Pixel Value: 30

Figure 11. Case studies on BadNets attacks with different levels of patches, namely the pixel value, on MNIST and LetNet 5.

E.2. Additional Experimental Results for testing the Adaptability Hypothesis on CIFAR10/GTSRB with ResNet

We train ResNet on the GTSRB to demonstrate the adaptability.

F. Additional Experimental Results for verifying the effective directions for SOTA attacks
We plot the dimensional Mahalanbois distances between clean data and backdoor data for three attacks with different
poisoning ratios in Figures 14 and 15. We observe that effective attacks tend to have a larger relative distance at the
dimension of data with low variances, supporting our results.
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Pics in the appendix, pixel = 10

(a)!!"# = 0.01 (b) !!"# = 0.05 (c) !!"# = 0.1

Figure 12. Case studies on BadNets attacks with different backdoor poisoning ratio αpoi, on MNIST and LetNet 5.

ResNet + GTSRB

(a) !!"# = 0.01 (b) !!"# = 0.05 (c) !!"# = 0.1

Figure 13. Case studies on BadNets attacks with different backdoor poisoning ratio αpoi, on GTSRB and ResNet 20.

0.005

BadNets Ada-B Ada-K

(a) (c) (b) 

Figure 14. Illustrations of dimensional Mahalanbois distance for three attacks on CIFAR10 and ResNet 20 with αpoi = 0.01. In each
figure, each point’s horizontal value represents the standard deviation (std) of one dimension of backdoor data, i.e., the standard deviation
of the jth dimension of data, and its vertical value is the relative change along the same dimension, i.e., the difference (in absolute value)
between clean and backdoor data along the jth dimension divided by the std of the jth dimension. We observe that for Ada-B attacks,
they tend to have a larger (smaller) relative distance on the dimension of data with lower (higher) std, consistent with our theory.

G. Pseudo-code for visualisation algorithms and additional experimental results
We give the pseudo-code for our visualizing algorithm in this section. Additionally, we provide two extra empirical studies
on the effect of backdoor sample size ratio αpoi as demonstrated in Figures 16 and 17. We observe that CNNs latent spaces
are well separated under our transformation with Algorithm 1, yielding the effectiveness of our proposed method.

H. More results on VGG architectures
We apply our algorithms for visualizing to the latent embeddings of VGG 16, with a dimension of 1024, with CIFAR 10
Dataset and the Ada-k attack, as illustrated in Figure 18. We observe that our algorithms can still visually separate between
clean and backdoor data.
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Figure 15. Illustrations of dimensional Mahalanbois distance for three attacks on CIFAR10 and ResNet 20 with αpoi = 0.05. In each
figure, each point’s horizontal value represents the standard deviation (std) of one dimension of backdoor data, i.e., the standard deviation
of the jth dimension of data, and its vertical value is the relative change along the same dimension, i.e., the difference (in absolute value)
between clean and backdoor data along the jth dimension divided by the std of the jth dimension. We observe that for Ada-K and Ada-B
attacks, they tend to have a larger (smaller) relative distance on the dimension of data with lower (higher) std, consistent with our theory.

Algorithm 1 Visualizing high-dimensional data
Input: Data {(xi, yi)}ni=1, Number of Classes K, An empty array Q = [q1, . . . , qn] of dimension n×K

1: for c = 1 to K do
2: Calculate class-conditional mean µc and covariance Σc

3: end for
4: for i = 1 to n do
5: for c = 1 to K do
6: Append (xi − µc)

⊤Σ−1
c (xi − µc) to qi // Class-conditional Mahalanbois Distance

7: end for
8: end for

Output: Transformed data Q

BadNets Ada-B Ada-K
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PCA

Figure 16. PCA visualizations of (a) the original and (b) our theoretically transformed (via Algorithm 1) latent spaces of ResNet 20 on
CIFAR10 αpoi = 1% three SOTA Attacks. The latent spaces of Ada-B and Ada-K attacks do not exhibit a clear separation of clusters in
their original form. However, our theoretical results demonstrate that a transformed version of these spaces does display two distinct and
separate clusters.
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Figure 17. TSNE visualizations of (a) the original and (b) our theoretically transformed (via Algorithm 1) latent spaces of ResNet 20 on
CIFAR10 αpoi = 1% three SOTA Attacks. The latent spaces of Ada-B and Ada-K attacks do not exhibit a clear separation of clusters in
their original form. However, our theoretical results demonstrate that a transformed version of these spaces does display two distinct and
separate clusters.

PCA TSNE
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Figure 18. Visualizations on the latent spaces of VGG 16 on CIFAR10 with Ada-K attacks.
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